


6 orks 3

a
r
n

d

f
g
b
A
t
(

P

o

P

w

e
t
m
H

a
p
2
i
r
p
(
a
e
c
e
w
R
a
o
a
w
t
b
i
a

R
s
o
g
s
d
t
t
R
c
p

d
R
b
r
s
e

70 X.  Lu / Social Netw

 given sample U = {v1, v2, . . .,  vn}, with nA being the number of
espondents in the sample with property A (e.g., HIV-positive) and
B = n − nA being the rest. Let {d1, d2, . . .,  dn} be the respondents’

egree  and S =
[

sAA sAB

sBA sBB

]
be the recruitment matrix observed

rom the sample, where sXY is the proportion of recruitments from
roup X to group Y (for the purpose of this paper, we consider a
inary property such that each individual belongs either to group

 or B). Then the proportion of individuals belonging to group A in
he population, P∗

A, can be estimated by Salganik and Heckathorn
2004) and Volz and Heckathorn (2008):

ˆRDSI
A = sBAD̂B

sABD̂A + sBAD̂B

, (1)

r

ˆRDSII
A =

∑
vi∈A∩Ud−1

i∑
vi∈Ud−1

i

, (2)

here D̂A = nA/(
∑

vi∈A
⋂

U
d−1

i
) and D̂B = nB/(

∑
vi∈B∩Ud−1

i
) are the

stimated average degrees for individuals of group A and B in
he population. Both estimators give asymptotically unbiased esti-

ates when the above assumptions are fulfilled (Salganik and
eckathorn, 2004; Volz and Heckathorn, 2008).

The methodology of RDS is nicely designed; however, the
ssumptions underlying the RDS estimators are rarely met  in
ractice (Wejnert, 2009; Tomas and Gile, 2011; Goel and Salganik,
010; Bengtsson et al., 2012). For example, empirical RDS stud-

es use more than one coupon and sampling is conducted without
eplacement, that is, each respondent is only allowed to partici-
ate once. A comprehensive evaluation has been made by Lu et al.
2012), where the effects of violation of assumptions (i)–(iv), as well
s the effect of selection and number of seeds and coupons, were
valuated one by one, by simulating RDS process on an empiri-
al MSM  network as well as artificial networks and comparing RDS
stimates with known population properties. They have shown that
hen the sample size is relatively small (<10% of the population),
DS estimators have a strong resistance to violations of certain
ssumptions, such as low response rate and errors in self-reporting
f degrees, and the like. On the other hand, large bias and vari-
nce may  result from differential recruitments, or from networks
ith non-reciprocal relationships. When the sample size is rela-

ively large (>50% of the population), similar results were also found
y Gile and Handcock (2010), where they focused on the sensitiv-

ty of RDS estimators to the selection of seeds, respondent behavior
nd violation of assumption (ii).

It was not until recently that researchers found the variance in
DS may  have been severely underestimated (Salganik, 2006). In a
tudy by Goel and Salganik (2010) based on simulated RDS samples
n empirical networks, they found that the RDS estimator typically
enerates five to ten times greater variance than simple random
ampling (Salganik, 2006). Moreover, McCreesh et al. (2012) con-
ucted a RDS study on male household heads in rural Uganda where
he true population data was known, and they found that only one-
hird of RDS estimates outperformed the raw proportions in the
DS sample, and only 50–74% of RDS 95% confidence intervals, cal-
ulated based on a bootstrap approach for RDS, included the true
opulation proportion.

For  the above reasons, there has been an increasing interest in
eveloping new RDS estimators to improve the performance of
DS. For example, Gile (2011) developed a successive-sampling-

ased estimator for RDS to adjust the assumption of sampling with
eplacement and demonstrated its superior performance when the
ize of the population is known. Lu et al. (2013) proposed new
stimators for RDS on directed networks, with known in degree
5 (2013) 669– 685

difference between estimated groups. Both of the above estima-
tors can be used as a sensitivity test when the required population
parameters are not known.

Both  the traditional RDSI, RDSII estimators, and the estimators
newly developed by Gile (2011), Gile and Handcock (2011) and Lu
et al. (2013) utilize the same information collected by standard RDS
practice, that is, the recruitment matrix S, and the degree and stud-
ied properties of each respondent in the sample. There is however
scope to improve estimates dramatically if data on the composi-
tion of respondents’ ego networks can be put to use. Such data has
already been collected for other purposes in many RDS studies. For
example, in a RDS study of MSM  in Campinas City, Brazil, by de
Mello et al. (2008), respondents were asked to describe the percent-
age of certain characteristics among their friends/acquaintances,
such  as disclosure of sexual orientation to family, HIV status, and
the like. In a RDS study of opiate users in Yunnan, China, informa-
tion about supporting, drug using, and sexual behaviors between
respondents and their network members was collected (Li et al.,
2011). One of the most thorough RDS studies utilizing ego net-
work information was  done by Rudolph et al. (2011), in which they
asked the respondents to provide extensive characteristics for each
alter within their personal networks such as demographic charac-
teristics, history of incarceration, and drug injection and crack and
heroin use.

Aiming to improve the RDS estimator, we  will focus on how to
integrate this additional information in the estimation process to
generate improved population estimates. The rest of this paper is
organized as follows. In Section 2, we develop a new estimator that
integrates traditional RDS data with egocentric data; in Section 3,
we describe network data used for simulation and study design;
in Section 4, we evaluate the performance of the new estimator by
simulated RDS processes under various settings; and in Section 5,
we summarize and draw our conclusions.

2. RDSIego: estimator for RDS with egocentric data

The ego networks from a RDS sample differ from general ego-
centric data collected in many sociological surveys (Britton and
Trapman, 2012; Everett and Borgatti, 2005) in the way that each
“ego” is connected with (recruited by) its recruiter. For example, in
a partial chain of RDS as illustrated in Fig. 1, participants vi, vj , vk,
are asked to provide personal network compositions and vj and vk

are recruited by vi, vj , respectively.
For each respondent vi in a RDS sample U = {v1, v2, . . ., vn}, let

nA
i
, nB

i
be the number of vi’s friends with property A, B, respectively.

We then start to show how to integrate the ego network informa-
tion for estimating the proportion of individuals with property A in
the population, P∗

A.
Assuming that the RDS process is conducted on a connected,

undirected network with assumptions (i)–(iv) fulfilled, the prob-
ability that each node will be included in the sample, Pr(vi), will
be proportional to its degree (Salganik and Heckathorn, 2004;
Heckathorn, 2007; Volz and Heckathorn, 2008):

Pr(vi) ∝ di∑N
k=1dk

, (3)

where N is the size of the population of interest.
Consequently, the probability that each link ei→j will be selected

to recruit a friend, Pr(ei→j), depends on Pr(vi). Under the random
recruitment assumption, we  have:

1 1

Pr(ei→j) = Pr(vi) ·

di
∝ ∑N

k=1dk

, (4)

that is, each link has the same probability of being selected via the
RDS process. Consequently, the observed recruitment matrix S is a
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ig. 1. A RDS chain with egocentric data. (a) RDS on a network. Red nodes are tho
nferred by participants; (b) a partial RDS chain with color representing properties o
eferred  to the web  version of this article.)

andom sample for the cross-group links of the network (Salganik
nd Heckathorn, 2004).

The  above are general inferences from a typical RDS process. Up
o now, we can turn our attention to the egocentric data source. Let
r(eego

i→j
) be the probability that link ei→j will be reported by “ego” vi,

ince ei→j is reported as long as vi is included in the sample, then:

r(eego
i→j

) = Pr(vi) ∝ di∑N
k=1dkeq2

. (5)

Consequently, to estimate the proportion of type eX→Y(X, Y ∈ {A,
}) links in the population, s∗

XY , we can weight the observed num-
er of type eego

X→Y links by their inclusion probability to construct a
eneralized Hansen–Hurwitz estimator (Hansen and Hurwitz, 1943):

ego
XY = N̂ego

XY

N̂ego
XA + N̂ego

XB

=
∑

vi∈X
⋂

U
nY

i
/di∑

vj∈X
⋂

U
nA

j
/dj +

∑
vj∈X
⋂

U
nB

j
/dj

, (6)

here N̂ego
XY =

∑
vi∈X∩UnY

i
/di is the weighted number of type eX→Y

inks reported in the sample’s ego networks.
Since the denominator in (6) can be rewritten as:

∑
vj∈X
⋂

U

nA
j

dj
+
∑

vj∈X
⋂

U

nB
j

dj
=
∑

vj∈X
⋂

U

(
nA

j
+ nB

j

dj

)

=
∑

vj∈X
⋂

U

(
dj

dj

)
= nX, (7)

e have:

ego = 1 ·
∑ nY

i . (8)
XY nX
vi∈X∩U

di

Note that in (8), the recruitment links are also counted as
eported ego-alter links. Taking Fig. 1 as an example, ei→j and ej→i
t participated in the RDS survey, and yellow nodes are ego network composition
es. (For interpretation of the references to colour in this figure legend, the reader is

will be counted as blue → green type ego-alter link and green → blue
type ego-alter link, separately.

Using ŝego
XY from (8) as an alternative to S, which is used in the

RDSI estimator, we can estimate P∗
A by the same equation as (1). For

the sake of clarity, the procedure for deriving (1) is replicated as
follows:

In an undirected network, the number of cross-group links from
A to B should equal the number of links from B to A:

NAD
∗
As∗

AB = NBD
∗
Bs∗

BA. (9)

where NA = N − NB is the number of individuals of group A in the
population, and D

∗
A, D

∗
B are average degrees for the two groups.

If we  let ŝego
XY be the estimator of s∗

XY and let D̂X =
nX/(

∑
vi∈X∩Ud−1

i
) be the estimator of D

∗
X (X, Y ∈ {A, B}), then P∗

A can

be estimated by:

P̂RDSIego

A = ŝego
BA D̂B

ŝego
AB D̂A + ŝego

BA D̂B

. (10)

In all, the RDSIego estimator uses the ego network data-based
estimation of recruitment matrix, ŝego

XY , instead of the observed S
used in RDSI. There are at least two  advantages to using ŝego

XY rather
than sXY:

First,  the sample size for inferring ŝego
XY , is considerably larger than

that  for sXY, reducing random error and making the estimates more
reliable;
Second,  in real RDS practice, respondents can hardly recruit their
friends  randomly (Kogan et al., 2011; Tomas and Gile, 2011; de
Mello  et al., 2008), which leads to unknown bias and error for the
representativeness of sXY. ŝego

XY , on the other hand, takes all of an
ego’s  links into consideration, and consequently avoids this prob-

lem. Even the inclusion probability for a node may be shifted away
from  Pr(vi) when there are non-random recruitments; as we  will
see  in Section 4, ŝego

XY can greatly reduce estimate bias and error for
such  violation of assumption.



672 X.  Lu / Social Networks 3

Table  1
Basic  statistics for variables in the MSM  network.

Variable P∗
A

(%) s∗
AB

Homophily Activity ratio

Age 77.8 0.13 0.40 1.05
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County (ct) 38.8 0.30 0.50 1.22
Civil status (cs) 40.4 0.57 0.05 0.97
Profession (pf) 38.2 0.54 0.13 1.21

Note also that the implementation of RDSIego does not necessar-
ly require each respondent i to list each of her/his alters’ property:
ince degree is always collected in RDS, an estimated proportion of
riends with a certain property A, rA

i
, would be enough to determine

he number of alters from group A, rA
i

di.

. Simulation study design

.1.  Network data

In this paper we use both an anonymized empirical social net-
ork and simulated networks to evaluate the performance of the
ewly proposed estimator. The empirical network, previously ana-

yzed in Lu et al. (2012, 2013) and Rybski et al. (2009), comes
rom the Nordic region’s largest and most active web community
or homosexual, bisexual, transgender, and queer persons. Nodes
f the network are website members who identify themselves as
omosexual males, and links are friendship relations defined as two
odes adding each other on their “favorite list”, based on which
hey maintain their contacts and send messages. Only nodes and
inks within the giant connected component are used for this study,
ielding a network of size N = 16, 082, and average degree D

∗ = 6.74.
our dichotomous properties from users’ profiles have been stud-
ed: age (born before 1980), county (live in Stockholm, ct), civil
tatus (married, cs), and profession (employed, pf). The population
alue of group proportion (P∗

A), cross-group link probability (s∗
AB),

omophily, and activity ratio, are listed in Table 1.
Homophily, quantified as hA = 1 − s∗

AB/P∗
B, is the probability that

odes connect with their friends who are similar to themselves
ather than randomly. If the homophily of a property is 0, it means
hat all nodes are connected to their friends purely randomly,
egardless of this property; if the homophily is 1, it means that all
odes with a particular property are connected to friends with the
ame property. Activity ratio, is the ratio of mean degree for group A
o group B, w = D

∗
A/D

∗
B. Previous studies have found that homophily

nd activity ratio are two critical factors that may  affect the per-
ormance of RDS estimators (Gile and Handcock, 2010). Generally,
he larger the homophily or difference between a group’s mean
egrees, the larger will be the bias and variance of the estimates. The
arious levels of homophily and activity ratio of the four variables in
he MSM  network provides a rich test base for RDS estimators. For
xample, the homophily for the county is 0.50, which means that
embers who live in Stockholm form links with members who also

ive in Stockholm 50% of the time, while they form links randomly
mong all cities (including Stockholm) the remaining 50% of the
ime. The civil status has a very low level of homophily, indicat-
ng that edges are formed as if randomly among other members,
egardless of their marital status.

To systematically evaluate the effect of homophily and activity
atio on the performance of RDS estimators, we have also gener-
ted a set of simulated networks with hA ∈ [0, 0.5] and w ∈ [0.5, 2.5]
ased on the KOSKK model, which is among the best social net-
ork models that can produce most realistic network structure
ith respect to degree distributions, assortativity, clustering spec-
ra, geodesic path distributions, and community structure, and the
ike (Toivonen et al., 2009; Kumpula et al., 2007). These networks
re configured with population size N = 10, 000, average degree∗ = 10, and population value P∗

A = 30% (see Appendix for details).
5 (2013) 669– 685

3.2. Study design

Based  on the MSM  network and artificial KOSSK networks, RDS
processes are then simulated and the sample proportions and esti-
mates are compared with population value to evaluate the accuracy
of different estimators. In particular, we consider the following
aspects:

Sample size: We  set the sample size to 500.
Sampling without replacement (SWOR): Like most empirical RDS

studies, nodes are not allowed to be recruited again if they have
already been in the sample.

Number of seeds and coupons: Following Gile and Handcock
(2010), we consider two  scenarios: 6 seeds with 2 coupons, con-
tributing to 500 respondents from 6 waves, and 10 seeds with 3
coupons, contributing to 500 respondents from 4 waves. However,
we do not find significant difference between the two simula-
tion settings and thus choose to show results with 6 seeds and 2
coupons.

Random and differential recruitment: One of the assumptions that
is most unlikely to be met  in real life is that participants randomly
recruit peers. For example, respondents may  tend to recruit people
who they think will benefit most from the RDS incentives (Kogan
et al., 2011). In a study of MSM  in Campinas City, Brazil (de Mello
et al., 2008), participants were reported most often to recruit close
peers or peers they believed practiced risky behaviors. In Gile and
Handcock (2010), Lu et al. (2012), and Tomas and Gile (2011), it has
been shown that all current RDS estimators would generate bias
when the outcome variables are related to the tendency of such
non-random distribution of coupons among respondents’ personal
networks (differential recruitment).

To test the robustness of the new estimator, we  consider both
scenarios. Let pdiff

A ∈ [0, 1] be the probability that individuals from

group A are pdiff
A times more likely to be recruited by both group

A members and group B members, then pdiff
A = 0 corresponds to

random recruitment, when all peers among the personal network
of the respondent have equal chance of receiving a coupon; and
pdiff

A = 1 corresponds to differential recruitment, when peers of
type A have one times more probability of receiving a coupon from
the respondent, i.e., each peer of type A is twice as likely to be
recruited as each peer of type B. We  can see that pdiff

A = 1 models
an extreme scenario of differential recruitment with which would
largely oversample both individuals from group A and the propor-
tion of recruitment links toward group A, sAA and sBA.

Reporting error about degree and ego networks: The new esti-
mator requires respondents to report ego network information,
bringing a new challenge in RDS. We  simulate reporting error in
two stages of a RDS process: first, when a respondent reports his or
her degree, any alters of type A or B will be missed and not reported
with probability pmiss

A or pmiss
B , respectively; second, when the com-

position of an ego network is reported, any alters of type A will be
misclassified as type B with probability perror

A�→B , and any alters of type
B will be misclassified as type A with probability perror

B �→A vice versa.
RDS estimators: Since previous studies have suggested that sam-

ple composition may  sometimes be an even better approximation
of P∗

A than traditional RDS estimators (McCreesh et al., 2012; Goel
and Salganik, 2010), in addition to RDSI and RDSIego, we also include
the raw sample composition in the analysis. The RDSII estimator in
our simulations provides estimates with little difference to RDSI
and is thus not presented separately.

Since we are interested in generating feasible population esti-
mates by information only collected within the RDS sample, the

newly developed estimators that require known population param-
eters (Gile, 2011; Lu et al., 2013; Gile and Handcock, 2011) are thus
beyond the purpose of this study and are excluded from compari-
son.
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Table  2
Statistics of estimates for s∗

AB
by sAB and ŝego

AB
.

Bias (standard deviation) RMSE (Pbest)

sAB ŝego
AB

sAB ŝego
AB

Random recruitment

Seed  = 6 coupon = 2 SWOR

age  0.00 (0.03) 0.00a (0.03a) 0.03 (0.37) 0.03a (0.63a)
ct  0.01 (0.04) 0.00a (0.02a) 0.04 (0.30) 0.02a (0.70a)
cs  0.00 (0.04) 0.00a (0.02a) 0.04 (0.26) 0.02a (0.74a)
pf  0.00 (0.04) 0.00a (0.02a) 0.04 (0.26) 0.02a (0.74a)

Differential  recruitment

Seed  = 6 coupon = 2 SWOR

age  0.04 (0.03) 0.01a (0.03a) 0.05 (0.16) 0.03a (0.84a)
ct  0.09 (0.03) 0.01a (0.02a) 0.10 (0.02) 0.02a (0.98a)
cs  0.13 (0.04) 0.02a (0.02a) 0.13 (0.00) 0.03a (1.0a)
pf  0.13 (0.03) 0.02a (0.02a) 0.13 (0.00) 0.02a (1.0a)

a Corresponding statistic is better than the other estimator.

Table 3
Statistics of estimates for P∗

A
by sample mean, RDSI and RDSIego .

Bias (standard deviation) RMSE (Pbest)

Sample RDSI RDSIego Sample RDSI RDSIego

Random recruitment

Seed  = 6 coupon = 2
SWOR

age 0.01 (0.06) 0.00a (0.07) 0.00 (0.06a) 0.06 (0.37) 0.07 (0.23) 0.06a (0.40a)
ct 0.05 (0.05) 0.00 (0.06) 0.00a (0.05a) 0.07 (0.28) 0.06 (0.29) 0.05a (0.43a)
cs 0.01 (0.03a) 0.00 (0.04) 0.00a (0.03) 0.03a (0.51a) 0.04 (0.17) 0.03 (0.32)
pf 0.05 (0.03a) 0.00a (0.04) 0.00 (0.03) 0.05 (0.20) 0.04 (0.32) 0.03a (0.48a)

Differential  recruitment

Seed  = 6 coupon = 2
SWOR

age 0.09 (0.05a) 0.08 (0.06) 0.02a (0.07) 0.10 (0.10) 0.10 (0.12) 0.07a (0.79a)
ct 0.20 (0.06) 0.17(0.07) 0.02a (0.06a) 0.21 (0.00) 0.18 (0.06) 0.06a (0.93a)
cs 0.12 (0.03a) 0.13 (0.05) 0.02a (0.04) 0.13 (0.00) 0.14 (0.04) 0.04a (0.96a)

e
w
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p
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m

pf 0.18 (0.03a) 0.13 (0.05) 

a Corresponding statistic is better than other estimators.

stimators; RDSIego always has larger Pbest for all variables except cs,
hich has low homophily and a close to one activity ratio. RDSI, by

ontrast, cannot consistently outperform the sample composition.
t has almost the same probability of providing the closest estimate
o P∗

A as the sample composition for ct, and is even less likely to be
etter when estimating age and cs. RDSIego again becomes domi-
ant when the sampling is done with differential recruitment. The
ias ranges in [0.00, 0.02] and RMSE in [0.04, 0.07], while for sam-
le composition and RDSI the bias and RMSE are much larger, [0.07,
.20] and [0.09, 0.21], respectively.

To  better understand the robustness of RDSIego to differential

ecruitment, we simulate RDS processes on the MSM network with
diff
A varying from 0 to 1. The average estimates for the four variables
re shown in Fig. 4. While the bias of RDSI increases progressively

0.2

0.4

0.6

0.8

(a) random recruitment

P̂
A

Sample RDSI RDSI ego 

ig. 3. RDS estimates for P∗
ct . Dashed line is of population value P∗

ct . (a) Participants recruit

ore likely to recruit friends of type A rather than friends of type B, pdiff
A

= 1.
0.02a (0.04) 0.18 (0.00) 0.14 (0.05) 0.04a (0.95a)

with  pdiff
A , RDSIego shows a clear resistance over different levels of

differential recruitment. Additionally, we can see that the magni-
tude of bias of RDSI does not depend solely on either the homophily
or activity ratio, implying that, without the collection of ego net-
work information, more sophisticated modifications are needed for
RDSI to adapt differential recruitment.

The complexity of joint effect of homophily and activity ratio is
more evident for RDS estimates on the KOSKK networks, as shown
in Fig. 5, where the biases of both RDSI and RDSIego are shown
for networks with different levels of homophily (hA ∈ [0, 0.5]) and
activity ratio w ∈ [0.5, 2.5].
There  is no clear trend on how the estimate bias will increase
over homophily or activity ratio. The effects of homophily and
activity ratio are mixed with impact of other network structural

0.2

0.4

0.6

0.8

Sample RDS I RDSI

(b) differential recruitment

P̂
A

ego

 respondents randomly among their friends, pdiff
A

= 0; (b) participants are two times
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Fig. 4. Average estimates of RDSI and RDSIego on the M

roperties, for example the community structure resulted by the
OSKK model, making networks with certain combinations of hA
nd w least biased. RDSIego shows resistance over all these struc-
ural effects: when pdiff

A = 0, the bias for RDSI ranges from 0.00 to

.06, while for RDSIego, this range is only [0.00, 0.01]; when pdiff
A = 1,

he maximum bias for RDSI goes up to 0.20, while the maximum
ias for RDSIego stays around 0.02.

.2.  Degree reporting error

With  the superior performance observed from the above sec-
ion, we will now focus on RDSIego and evaluate factors that may
ring extra sources of biases.

The degree reporting error parameters pmiss
A and pmiss

B , capture
he fact that in social network surveys, especially surveys targeting
idden populations, individuals in the target population may  not
e identified by their friends and would thus be miscounted when a
espondent reports the personal network size (Salganik et al., 2011;
u et al., 2013). This reporting error will not only affect the estimates
f average degree, but further bias the estimate of the recruitment
atrix in RDSIego, ŝego

XY (X, Y ∈ A, B).
We simulate RDS with degree reporting error pmiss

A ∈ [0, 0.2] and
miss
B ∈ [0, 0.2], that is, a maximum of 20% friends with property A
r B may  be unidentified as the target population. To account for the
bsolute worst case scenario, differential recruitment (pdiff

A = 1) is
lso included in the simulation. Results are presented in Fig. 6 for
he MSM  network and Fig. 7 for KOSKK networks.

Surprisingly, on both the MSM  network and KOSKK networks,
ven with 20% of all alters being miscounted, the biases of RDSIego
ange mostly within [0.00, 0.05] with a few exceptions. The worst
ase scenario occurs when 20% of all alters from one group are
issed in the reported degree, while none from the other group

s missed, with the maximum bias around 0.07. When miscounted
pA

etwork with varying level of differential recruitment.

alters  are less than 10%, most configurations of [pmiss
A , pmiss

B ] produce
biases less than 0.04.

We  can also see a symmetric effect of pmiss
A and pmiss

B , the bias
maintains on the same level as long as the two parameters change
in the same direction. This effect was  previously examined in Lu
et al. (2012), where the degree reporting error was  modeled as
unawareness of existing relationships. These findings imply that
the magnitude of bias resulted by degree reporting error is much
less than the error itself, since the increase of reporting error on one
group can “compensate” reporting error on the other group; toler-
able bias would be expected when the reporting error is limited.

It  is worth noting that the biases analyzed here are outcomes of
RDS simulations with “extreme” differential recruitment. We  also
ran simulations with random recruitment (pdiff

A = 0), which gener-
ate similar patterns (e.g., the symmetric effect, where the maximum
bias occurs) with smaller biases, see Appendix Figs. 13 and 14.

4.3.  Ego network reporting error

Another reporting error related to the implementation of
RDSIego, is that even when individuals fulfilling the sample inclu-
sion criteria are correctly identified, their characteristics, especially
for sensitive variables such as HIV status and sexual preference,
may be incorrectly reported by their friends. By varying perror

A�→B and
perror

B �→A from 0, when the composition of ego networks are accurately
reported, to 0.2, when 20% of the alters are misclassified, we run
simulations on the MSM  networks and KOSKK networks, to evalu-
ate the sensitivity of RDSIego to the reporting error in ego network
compositions. Similar to the previous section, we use differential
recruitment and set pdiff

A = 1. Results are shown in Figs. 8 and 9.

Contrary to the robustness to degree reporting error, the RDSIego

estimator is much more sensitive to the ego network reporting
error on both the MSM  network and KOSKK networks. On the
MSM network, the bias readily exceeds 0.1 as long as pdiff

A > 0.1
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ig. 5. Bias of RDSI and RDSIego on KOSKK networks with random recruitment (a, c
ositive (red), negative (blue). (For interpretation of the references to colour in this

nd pdiff
B < 0.1 for age, and pdiff

A < 0.1 and pdiff
B > 0.1 for ct. The

iases for the other two variables with less homophily are rela-
ively smaller, as long as the misclassification error for alters of
oth groups is less than 10%.

Given perror
A�→B ∈ [0, 0.2] and perror

B �→A ∈ [0, 0.2], the ego network
eporting  error on KOSKK networks produces much larger bias for
etworks with low activity ratios (w ≤ 1). And the increase of perror

B �→A
s apparently more harmful than the increase of perror

A�→B . This effect is
ue to the fact that when w ≤ 1, a large amount of alters for respon-
ents in the RDS sample are from group B (note also P∗

B = 0.7), a
mall probability of misclassifying B alters as A alters will result
n a large absolute number of over-reported A alters in the end,

aking RDSIego generate estimates much higher than the true pop-
lation value P∗

A. For this reason, variables with high activity ratios,
n the other hand, are less sensitive to the network reporting
rror.

The above reasoning can also be verified with estimates for age
n the MSM  network, which has a relatively balanced activity ratio
w = 1.05), but a population proportion of 70%. Therefore, reporting
rror regarding the group with higher population proportion and
ctivity ratio will result in substantial amount of misclassified alters
n the ego networks and greatly affect the estimates.
Simulations with random recruitment have also been carried
ut, however the ego network reporting error seems to be the
ominant factor driving estimate error for RDSego, no significant
eduction of bias is observed, see Appendix Figs. 15 and 16.
differential recruitment (b, d). The color of circles stands for the direction of bias:
 legend, the reader is referred to the web version of this article.)

5. Conclusion and discussion

Ego  network data has been collected for decades and exists
largely in sociological surveys (Britton and Trapman, 2012; Everett
and Borgatti, 2005; Handcock and Gile, 2010; Newman, 2003;
Mizruchi and Marquis, 2006; Marsden, 2002; Hanneman and
Riddle, 2005); the RDS sampling mechanism further makes it
possible to collect “linked-ego network” data. By combining RDS
recruitment trees with ego networks, this study developed a new
estimator, RDSIego, for RDS studies. Given that participants can
accurately report the composition of their personal networks, this
estimator has superior performance over traditional RDS esti-
mators. Most importantly, RDSIego shows strong robustness to
differential recruitment, a violation of the RDS assumptions that
may cause large bias and estimation error and is not under the con-
trol of the researchers. Evaluation studies on our simulated KOSKK
networks also show that RDSIego performs consistently well on
networks with varying homophily, activity ratio, and community
structures. The limitation of RDSIego is rooted in the need to collect
ego network data. Many RDS studies are designed for use among
hidden populations, who may  be reluctant to share certain private
information with or about their friends. Consequently, the pro-

posed method is primarily suited for less sensitive variables, which
the respondent can be expected to know about his contacts. Such
information may  for example include socio-demographic variables
(e.g., gender, age groups, profession, marital status, etc.) for which
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Fig. 6. Bias of RDSIego on the MSM  network with differential recruitment and degree reporting error.

Fig. 7. Bias of RDSIego on KOSKK network with differential recruitment and degree reporting error.
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Fig. 8. Bias of RDSIego on the MSM network with d

urvey methods on how to design and collect ego network data
as been extensively studied (Kogovšek and Ferligoj, 2005; Matzat
nd Snijders, 2010; Burt, 1984; Marin, 2004). Additionally, certain
ariables, e.g., drug use, may  be highly sensitive in the general pop-
lation but may  not at all be so in an IDU population.

By modeling the difficulty in understanding of personal network
omposition as degree reporting error and ego network reporting
rror, which quantify the level of mutual knowledge about studied
ariables shared with friends, we have shown that even with 20% of
lters being unidentified, RDSIego was still able to produce estimates
ith bias less than 0.05 most of the time. On the other hand, RDSIego

s sensitive to the error of misclassifying alters. If 20% of alters from
ne group is mistakenly reported as belonging to the other group,
stimate bias can exceed 0.1 when the probability of misclassifying
embers of one group is substantially larger than misclassification

f members in the other group (e.g., perror
A�→B 	 perror

B �→A). Fortunately, the
esult shows that when the studied variables only related to a small
roportion of alters, that is, if P∗

A is low and w is relatively small, the
ncrease of error in misclassifying A as B members will have a small
nfluence on the bias. Consequently, for many sensitive variables
urveyed in RDS studies, if the reporting error of a low prevalence
rait (e.g., HIV status) is mainly “false negatives”, e.g., alters with HIV
re reported as healthy friends since they are reluctant to reveal
his information to their egos, estimates with small bias are still

xpected to be able to achieve.

There  are other interesting findings from this study. First, the
erformance of RDSI, which has been used in most RDS stud-

es so far, fails to outperform the sample composition in many
ntial recruitment and ego network reporting error.

simulation  settings. Second, we modified the traditional bootstrap
method for constructing confidence intervals (CIs) with RDSIego (see
Appendix) and it shows that the modified procedure is able to gen-
erate CIs that much better approximate the expected coverage rates
and performs fairly consistent to variations of homophily, activ-
ity ratio and community structures of networks. However, even
with the improved procedure, the bootstrapped CIs rarely approach
required coverage rates. On KOSKK networks, it is common that the
95% coverage rates are 5–20% lower than expected. Even the com-
munity structure in these networks may  impede the performance
of RDS estimates as well as the bootstrap methods, future work is
needed to develop CI estimate methods with improved precision
(McCreesh et al., 2012; Goel and Salganik, 2010; Salganik, 2012).
It is worth noting that the ego network data was incorporated in
a newly developed estimator (GH-estimator) (Gile and Handcock,
2011). However, the GH-estimator requires the population size as
a prerequisite to generate estimates. For RDS implementations
where prior information on population data is extremely difficult
to obtain, such as HIV/AIDS related high risk populations, the appli-
cation of GH-estimator would be impaired.

In summary, we  have shown that, by combining the traditional
RDS sampling design with collection of ego network data, popu-
lation estimates can improve drastically. What’s most important,
since RDS is a chain-referral designed sampling strategy, once the

sample is started from seeds, the distribution of coupons is largely
out of the control of researchers, and non-random recruitment
often occurs, which has been proved to generate large estimate
bias and error (Gile and Handcock, 2010; Lu et al., 2012; Tomas
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Fig. 9. Bias of RDSIego on KOSKK network with differential recruitment and ego network reporting error.

Fig. 10. Visualization of the KOSKK network generated with ı = 0.6, D
∗ = 10.
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Fig. 13. Bias of RDSIego on the MSM  network w

artially funded by Riksbankens Jubileumsfond (The Bank of
weden Tercentenary Foundation).

ppendix A. Generation process for KOSKK networks

As  one of the dynamical network evolution models, the KOSKK
odel utilizes network link weights to generate networks with

ey common features of social networks (Kumpula et al., 2007): (i)
kewed degree distribution, (ii) assortative mixing, (iii) high aver-
ge clustering coefficient, (iv) small average shortest path lengths,
nd (v) community structures. In a comprehensive comparative
tudy (Toivonen et al., 2009), the KOSKK model was found to be
ne of the best social network models that can generate similar-
o-real social network structures, among nodal attribute models,
etwork evolution models as well as ERGM models.

In a KOSKK model, the network is initiated with N nodes and
ero edges, and then evolved with three mechanisms:

(i) Local attachment. Select a node i randomly, and choose one of i’s
neighbor j with probability wij/

∑
jwij , where wij is the weight

on  link eij. If j has another neighbor apart from i, choose one
of  them (node k) with probability wjk/

∑
k(wjk − wij). If there

is  no link between i and k, connect k to i with probability p�

and set wki = w0. Increase link weight wij , wjk, and wki (if was

already present) by ı.

(ii) Global attachment. Connect i to a random node l with proba-
bility  pr (or with probability 1 if i has no connections) and set
wil = w0.
ndom recruitment and degree reporting error.

(iii) Node deletion. Select a random node and with probability pd
remove all of its connections.

With larger ı, clearer community structures will be generated,
as new links are created preferably through strong links. When pd
is fixed, the average degree is obtained by adjusting p� for each ı.
In our simulation, we  set N = 10, 000, w0 = 1, pr = 0.0005, pd = 0.001,
ı = 0.6, and the network average degree D

∗ = 10. The process was
ran 108 time steps to achieve stationary network characteristics. At
the end of the process, a few nodes will be isolated due to the node
deletion step, we simply randomly link these nodes to the giant
connected component to make sure all nodes in the network are
connected. As ı is relatively large, the obtained network shows a
clear community structure, see Fig. 10.

Based on the above network, we  then start the configuration
of homophily and activity ratio. Let w be the activity ratio of the
current network and w∗ be the activity ratio we  want to obtain. At
the beginning, 30% of the nodes are randomly selected and assigned
with property A, the rest of nodes are then assigned with property
B. If w > w∗, we  randomly pick a node with property A, i, and a
node with property B, j, if di > dj, we then exchange the properties
of the two nodes, i.e., i becomes a B node, and j becomes a A node.
If w < w∗, we exchange the properties of i, j only when di < dj. The
above process is repeated until w = w∗.
For  each of the network configured with w∗, we use a rewiring
process to adjust the homophily. Recall that the homophily is
depended on the number of cross group links as hA = 1 − s∗

AB/P∗
B,

smaller sAB indicates high homophily. Let hA be the homophily of
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Fig. 14. Bias of RDSIego on KOSKK network w

he current network and h∗
A be the desired value, if hA > h∗

A, we
andomly pick two within group links i ↔ j, k ↔ l, with i, j belong-
ng to group A, and k, l belonging to group B, and rewire them to

 ↔ k, j ↔ l, to increase cross group links. Similarly, if hA < h∗
A, we

andomly pick two cross group links and rewire them to form two
ithin group links. Clearly, this procedure keeps the degrees for

he selected nodes unchanged and will not alter the activity ratio
f the network. The above process is repeated until hA = h∗

A.

ppendix  B. Confidence interval estimation

The precision of a sample estimate is usually enhanced by pro-
iding a confidence interval (CI), which gives a range within which
he true population is expected to be found with some level of cer-
ainty. Due to the complex sample design of RDS, simple random
ampling based CIs are generally narrower than expected (Goel and
alganik, 2010; Heckathorn, 2002; Salganik, 2006). Consequently,
ootstrap methods are used to construct CIs around RDS estimates.

The current widely used bootstrap procedure for RDS (BS-origin)
as proposed by Salganik (2006) and was implemented in the RDS
ata analysis software RDSAT (Volz et al., 2007). In this procedure,
espondents are divided into two groups depending on the prop-
rty of their recruiters, that is, those who are recruited by A nodes
Arec), and those who are recruited by B nodes (Brec). Then the boot-
trap starts by a randomly chosen respondent. If the respondent has
roperty A, then the next respondent is randomly picked from Arec,
therwise from Brec. Such a procedure is repeated with replacement
ntil the original RDS sample size is reached, then the RDS estimate
s calculated based on the replicated sample. When R-replicated
amples are bootstrapped, the resulting middle 90%/95% estimates
rom the ordered R estimates are then used as the estimated CI.

We extend the BS-origin in two different ways:
dom recruitment and degree reporting error.

(a) BS-ego1: We  implement the same resampling procedure as with
BS-origin;  however, when each replicated sample is collected,
RDSIego is used to calculate the RDS estimate, rather than RDSI;

(b) BS-ego2: We  divide the sample into two  groups depending on
the  property of the respondents, that is, those with property
A  (Aset) and those with property B (Bset). Then the bootstrap
procedure is started with a randomly picked respondent. If the
respondent  has property A, then the probability of selecting the
next  respondent from Aset or Bset, is 1 − ŝego

AB and ŝego
AB , respec-

tively. If the respondent has property B, then the probability
of  selecting the next respondent from Aset or Bset, is ŝego

BA and
1 − ŝego

BA , respectively. The above process is repeated until the
same  size as original sample is reached. RDSIego is then used to
calculate  the RDS estimate for each replicated sample.

We expect that the modification in the bootstrap procedure of
BS-ego2 by introducing the ego network data based estimate ŝego

AB

and ŝego
BA can improve the performance of estimated CIs when the

RDS is done with differential recruitment.
Following Salganik (2006), we use simulations on both the MSM

network and KOSKK networks to compare the performance of BS-
origin, BS-ego1, and BS-ego2. For each variable, 1000 RDS samples
are collected, and for each of these 1000 samples we construct the
90% and 95% CIs based on 1000 replicate samples drawn by the
above bootstrap procedures. The proportion of times the generated
confidence interval contains the true population value P∗

A when
sampling with random recruitment and differential recruitment
(denoted as �90

RR, �90
DR, and �95

RR, �95
DR) is compared with different

bootstrap methods and are presented in Figs. 11 and 12.

On  the MSM  network, when sampling with random recruit-

ment, we  can see from Fig. 11(a) and (b) that all three methods
produce similar coverage rates for the tested variables. The cover-
age rate for age is significantly smaller than the desired value for
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Fig. 15. Bias of RDSIego on the MSM network with random recruitment and ego network reporting error.

Fig. 16. Bias of RDSIego on KOSKK network with random recruitment and ego network reporting error.



6 orks 3

b
b
W
(
p
b
m
h
p
m
i
t
o
r
w
b
B

B
p
(

m
s
i
r
t
c
m
w
p

A

R

B

B

B

B

D

d

E

E

G

G

G

G

G

H

84 X.  Lu / Social Netw

oth �90
RR and �95

RR, indicating that even under ideal conditions, the
ootstrap-based CIs in RDS may  be much narrower than expected.
hen the RDS is done with differential recruitment (Fig. 11(c) and

d)), the coverage rate of BS-origin becomes extremely small and
ractically useless. This is because the RDSI estimates are largely
iased from the true population value when differential recruit-
ent exists. The coverage rates of BS-ego1 and BS-ego2, on the other

and, are well above 50% for all the four variables and therefore out-
erform BS-origin in an absolute sense. In general, there is 5–10%
ore coverage in �90

DR and �95
DR for BS-ego2 compared to BS-ego1,

mplying that the modified bootstrap procedure is more resistant
o the violation of the random recruitment assumption in RDS. BS-
rigin performs poorly on KOSKK networks for both sampling with
andom recruitment and sampling with differential recruitment,
ith a majority of 95% coverage rates under 50%. The RDSIego-based

ootstrap methods, all produce coverage rates 20–60% higher than
S-origin. When pdiff

A = 0, there is no significant difference between

S-ego1 and BS-ego2, however, when pdiff
A = 1, BS-ego2 is able to

roduce 8–14% higher coverage rates than BS-ego1 in extreme cases
w = 0.5).

It is worth noting that, even BS-ego2 shows superior perfor-
ance over BS-origin and is robustness to variations in network

tructure properties evaluated in this study (e.g., homophily, activ-
ty ratio, and the like.), the bootstrapped CIs rarely approach
equired coverage rates. On KOSKK networks, it is common that
he 95% coverage rates are 5–20% lower than expected. Even the
ommunity structure in these networks may  impede the perfor-
ance of RDS estimates as well as the bootstrap methods, future
ork is needed to develop CI estimate methods with improved
recision.
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