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Most severe disasters cause large population movements. These
movements make it difficult for relief organizations to efficiently
reach people in need. Understanding and predicting the locations
of affected people during disasters is key to effective humanitarian
relief operations and to long-term societal reconstruction. We col-
laborated with the largest mobile phone operator in Haiti (Digicel)
and analyzed the movements of 1.9 million mobile phone users
during the period from 42 d before, to 341 d after the devastating
Haiti earthquake of January 12, 2010. Nineteen days after the
earthquake, population movements had caused the population
of the capital Port-au-Prince to decrease by an estimated 23%. Both
the travel distances and size of people’s movement trajectories
grew after the earthquake. These findings, in combination with the
disorder that was present after the disaster, suggest that people’s
movements would have become less predictable. Instead, the
predictability of people’s trajectories remained high and even in-
creased slightly during the three-month period after the earth-
quake. Moreover, the destinations of people who left the capital
during the first three weeks after the earthquake was highly cor-
related with their mobility patterns during normal times, and spe-
cifically with the locations in which people had significant social
bonds. For the people who left Port-au-Prince, the duration of
their stay outside the city, as well as the time for their return, all
followed a skewed, fat-tailed distribution. The findings suggest
that population movements during disasters may be significantly
more predictable than previously thought.
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In 2010, natural disasters displaced 42 million people, directly
affected an estimated 217 million people, and resulted in USD
120 billion worth of damage (1, 2). The humanitarian response to
natural disasters relies critically on data on the geographic distri-
bution of affected people (3). During the early response phase,
data on population distributions are fundamental to the delivery
of water, food, and shelter, and to the creation of sampling frames
for needs assessment surveys (4). During later stage reconstruc-
tion efforts, population distribution data is required for the allo-
cation of schooling resources, delivery of seeds, construction of
houses, and the like (5, 6).

Despite a number of studies on human mobility patterns dur-
ing small-scale, short-term emergencies such as crowd panics
(7, 8) and fires (9, 10), research on the dynamics of population
mobility during large-scale disasters such as earthquakes, tsuna-
mis, floods, and hurricanes has been limited (11). Existing re-
search on population movements after large-scale disasters has
been hampered by difficulties in collecting representative longi-
tudinal data in places where infrastructure and social order have
collapsed (12, 13), and where study populations are moving
across vast geographical areas (14). Existing research has found
that people displaced by natural disasters typically stay within
their country of residence, that sudden-onset disasters often lead
to more short-term displacement than do slow-onset disasters
(15), and that postdisaster reconstruction programs in the long
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run can cause populations to move into disaster-affected areas
rather than moving away from them (11).

The increased use of mobile phones, even in low- and middle-
income countries (16), offers a new way to circumvent methodolo-
gical problems of earlier research. Data from mobile phones have
the advantage of high resolution in time and space, being instan-
taneously available with no interview bias, and they provide long-
itudinal data for very large numbers of persons (12, 17-23). Even
more importantly, cellphone data allows for statistics based on tra-
jectories of individuals. This means one can, as we will in this paper,
study how the disaster affects people’s daily behavior and routines.

Pioneering work using mobile phone data to describe human
mobility patterns has been carried out during stable social con-
ditions (17-19). One major conclusion from these studies is that,
despite a broad distribution of average travel distances among
people, the movements of individuals are surprisingly predictable
(17). In this paper, we study mobile phone data from Haiti col-
lected before and after the tragic Haiti earthquake on Tuesday,
January 12, 2010, which left an estimated 1.8 million people
homeless and killed between 65,000 and 300,000 persons (24, 25).

We collaborated with the largest mobile phone operator in
Haiti, Digicel, to analyze the positions of 2.9 million anonymous
subscribers during the period from 42 d before the earthquake to
341 d after (December 1, 2009, to December 19, 2010). Specifi-
cally, we obtained the locations of all anonymous Digicel mobile
phone users at the time of their first call each day. To exclude
relief workers entering Haiti after the earthquake and people
who died or whose SIM cards stopped functioning, we excluded
people who did not call at least once before the earthquake and
at least once during the last month of the study period. After
this filtering, we obtained 1.9 million individuals across Haiti
[10 million inhabitants (26)] out of which 0.8 million were located
within Port-au-Prince [2.6 million inhabitants (26)] on the day
of the earthquake. We assume in this paper that the mobile
phone movements were representative of the general population
movements. Although this issue requires additional research, we
showed in a separate paper (13), using the same data source, that
mobile phone movements after the Haiti earthquake corre-
sponded well with comparable movement data from a large retro-
spective household survey of 12,250 persons, performed by
UNFPA eight months after the earthquake. The spatial resolu-
tion of people’s locations is that of the coverage areas of the mo-
bile phone towers in the network (ranging from less than 100 m in
urban areas to a few tens of kilometers in the hinterland).
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In order to understand fundamental changes in mobility pat-
terns after a large-scale disaster, we analyze how the earthquake
changed the aggregate mobility of individuals in the severely hit
capital Port-au-Prince (PaP), to what extent the chaotic condi-
tions after the earthquake influenced the disorder and predict-
ability of the population’s movements, and the dynamics of the
population flows out of and back into PaP. We address both the
larger-scale prediction of population displacements and the pre-
dictability of the trajectories of individuals. Surprisingly, we find
that despite large changes in the population distribution across
the country, the mobility of the PaP population contained several
highly regular features, and most individuals’ movements re-
mained highly predictable.

Results

Daily Travel Distances and Population Flows. To get an overview of
the aggregate travel patterns before and after the earthquake, we
show (Fig. 1B) the observed distribution of travel distances over
the sampling period. One day after the earthquake (January 13,
2010), 6.5% of the observed individuals had traveled more than
20 km as compared to the preceding day, while the corresponding
figure before the earthquake (December 1-2, 2009) was 3.5%.
The increase in average daily travel distances lasted for two to
three weeks after the earthquake. It is worth noting that other
periods also saw sudden increases in average daily travel dis-
tances. These periods coincided with Christmas and New Year
from around December 20 to January 3—just before the earth-
quake—as well as the Easter holidays (early April).

The earthquake did not directly affect large parts of Haiti. In
the rest of our analyses, we therefore focus on the population of
the heavily affected capital region (PaP). As we show in Fig. 1C,
the population movements after the earthquake on January 12,
2010, led to a rapid decrease in the PaP population. Nineteen
days after the earthquake (January 31), the net population de-
crease was an estimated 23% compared to the stable level before
Christmas (December 1-20, 2009), assuming the phone move-
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ments to be representative of the population movements. The
net flow into PaP again became positive 20 d after the earthquake
(February 1), and the PaP population increased approximately
linearly over the following three months (February 1 to April
30). After this time, the population increase gradually leveled
off and stabilized at the end of the year, with two short deviations
around All Saints Day (November 1) and the election day
(November 28).

There was a similar but smaller population decrease in PaP
during the preceding Christmas and New Year (Fig. 1C). As we
saw in Fig. 1B, this was also a period of generally increased travel
in Haiti. A similar but smaller decrease was also seen during
Easter. The population decrease in PaP during holidays is likely
explained by many people leaving the capital to spend time with
family and friends outside PaP. It is interesting to observe that
the PaP population at the time of the earthquake had not yet fully
recovered after the Christmas and New Year holidays. Assuming
that the people who left PaP over the holidays were all going to
return in the absence of the disaster, approximately 70,000 per-
sons (2.5% of the PaP population) managed for this reason to
avoid being in PaP on the day of the earthquake.

There is a strong weekly regularity in the number of mobile
phone users in PaP. Increased numbers of people are present in
PaP during working days, with corresponding smaller numbers
present during weekends (Fig. 1C). This pattern was restored
as early as three weeks after the earthquake.

To get a detailed view of the daily travel distances, d, we plot
for a few different dates the cumulative probability distributions
of d for two groups of people: persons present and not present in
PaP on the day of the earthquake. The distributions are basically
the same for both groups before the earthquake as well as eight
months after the earthquake, when social life had stabilized
considerably. However, right after the disaster there is a striking
deviation in the distribution of travel distances (Fig. 1D), which is
not present for people located outside PaP on the day of the
earthquake (Fig. 1E). We fitted the curves in panels D and E
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Fig. 1. Overview of population movements. (A) Shows the geography of Haiti, with distances from PaP marked. The epicenter of the earthquake is marked by

a cross. (B) Gives the proportion of individuals who traveled more than d km between day t — 1 and t. Distances are calculated by comparing the person’s
current location with his or her latest observed location. In (C), we graph the change in the number of individuals in the various provinces in Haiti. (D) Gives a
cumulative probability distribution of the daily travel distances d for people in PaP at the time of the earthquake. (E) Shows the cumulative probability dis-
tribution of d for people outside PaP at the time of the earthquake. Finally, (F) gives the exponent a of the power-law dependence of d—the probability of d is
proportional to d . These are obtained by a maximum-likelihood method (33), and differ from the slopes of the lines in (D) and (E) by unity since these are the
cumulative distributions.
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(or rather the corresponding probability mass functions) to a
power law p(d) ~d~“. The coefficient « indicates the slope of
the distribution. The smaller « is, the more fat-tailed is the dis-
tribution. In other words, a small o« means larger differences be-
tween the average and the largest travel distances. In Fig. 1F, we
show the a-values of the daily travel distances. We see that the a-
values dip around the holidays for both the people present and
not present in PaP on the day of the earthquake. However, while
a goes back to normal in mid-January for the population outside
PaP, it stays low until the early summer for the Port-au-Princians.

Movement patterns were heterogeneous both under normal
conditions (echoing results of refs. 17 and 19), and after this
large-scale disaster. In the latter case, however, the heterogeneity
is even more pronounced than during normal times. Taken to-
gether, the analyses in Fig. 1, consistently shows that the move-
ment patterns changed primarily for the directly affected people
and returned back to normal after 4 ~5 mon.

Regularity and Predictability of People’s Trajectories. The above ana-
lysis reveals that the earthquake triggered large population move-
ments, caused increases in daily travel distances of people in the
affected area, and produced an increase in the heterogeneity of
travel distances. Since a large-scale disaster throws much of
society into disorder, one may assume that the underlying cause
for these changes is an increase in the disorder in people’s move-
ments—that a large-scale disaster causes people to move irregu-
larly while fleeing unrest and searching for material support. In
this section, we will show that this hypothesis is incorrect.

To analyze the changes in people’s trajectories caused by the
earthquake, we divided the sampling period into three equally
long periods: spring—from January 12 (the day of the earth-
quake) to May 5; summer—from May 6 to August 27; and fall—
from August 28 to December 19. To get good statistics on the
trajectories, we restrict ourselves to those who called 70% or
more of the days during all three periods. To characterize the tra-
vel patterns, we follow ref. 17 and focus on two classes of mea-
sures—radius of gyration (a measure of the size of trajectories)
and entropy measures for analyses of disorder and predictability.

The radius of gyration captures the size of the trajectory as if it
was a physical object. (See the Methods section for a definition.)
It is, in theory, rather different from the daily average travel

distance. Someone who moves in a comparatively confined space
will have a small radius of gyration even though he or she covers a
large distance. R is also different from the physical extent of the
trajectory in that it weighs the contribution from a sector by the
time a person has been there. For example, someone that spends
most of the time at one location (A) but makes one trip to an-
other location (B) on the other side of the country will have a
smaller radius of gyration than someone who constantly travels
between A and B. The probability distribution of the radius of
gyration for PaP residents is presented in Fig. 24. We see that,
just like the daily travel distance, the average radius of gyration
was higher immediately following the earthquake (spring) than
during the summer and fall periods. The distributions of the ra-
dius of gyration during these later periods (summer and fall) are
very similar to each other, indicating the return to normality after
earthquake. For example, during the spring period, right after the
earthquake, 43% of the studied population had a radius of gyra-
tion of more than 10 km, while the corresponding figures for the
summer and fall periods were 32% and 29%, respectively. To sum-
marize, in terms of the shape of the distributions of the trajec-
tories (like the daily travel distances), the disaster enlarged the
travel patterns, an effect that lasted into the summer. Even if this
is not a true for each individual, other quantities, as we will soon
see, support this general picture.

The trajectories of people in stable societal conditions are
often quite regular—people visit the same places (home, work,
their favorite grocery store, etc.) in the same order (17). Since
history repeats itself in this respect, the movements of people are
predictable. To study this, we use entropy (disorder) and an in-
formation theoretic definition of predictability (described in the
Methods section). Note that, the sense in which we use the word
“predictability” here relates to the regularity of people’s move-
ments after the earthquake. Further below we describe how data
from before the earthquake could be used to predict people’s des-
tinations as they left PaP after the earthquake.

Comparing the entropies S of the three periods (Fig. 2B), we
discover that their probability distributions are conspicuously un-
changed over the three periods, and the predictability IT (Fig. 2C)
is also very similar during the three periods. The only difference is
that people are actually slightly more predictable right after the
disaster than during the rest of the year. As already mentioned,
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Fig.2. Trajectory analysis of mobile phone users who were present in PaP on the day of the earthquake. (A) Shows the cumulative distribution of the radius of
gyration: rg. (B) Displays the distribution of entropy S. (C) Gives the distribution of the maximal predictability IL. (D) Shows the correlation between radius of
gyration ry and T1. In (£), we graph the fraction of time a person spent in the top n visited communes 1. (F) gives the averaged R/R™" versus the radius
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people did not become more predictable because they became
immobile—they moved even more after the disaster. The prob-
ability distribution of entropy P(S) peaks at around 1.5 (Fig. 2B).
One interpretation is that a typical mobile phone user present in
PaP on the day of the earthquake had an uncertainty of 2! ~ 2.8
locations for his or her next destination. The predictability P(IT)
peaks at around 0.85 (Fig. 2C), meaning that we have an upper-
limit of 85% to predict the typical person’s next destination during
each of the three periods. These findings show that, even in this
extreme disaster, human movements over the three 3-mon periods
remained highly predictable. People moved farther, but not less
regularly, during the tumultuous time after the disaster.

Data from a high-income country during stable social condi-
tions have shown that IT is almost constant for people with r, ran-
ging from 10 up to 1,000 km (17). This is, however, not the case in
our data. In Fig. 2D, we see that predictability increases with
increasing r, during all three periods (i.e., people traveling farther
are more predictable). Furthermore, predictability remains
slightly higher after the earthquake for most of the r, range.

Predictability, based on the regularity in people’s movements,
gives us a theoretical upper limit of how well we can forecast a
person’s trajectory, but it does not tell us how to forecast it. The
simplest prediction technique is to count the visiting frequency of
a person’s historical trajectory, taking the most frequently visited
location as a predictor of the person’s next destination. Because
towers are not uniformly distributed across the country, we use a
more relevant division of the country, the Haitian “commune” (in
total, 140 communes). On average, a mobile phone user spent
75% of the time in his or her most frequently visited commune
(see Fig. 2E). In agreement with the results above, this pattern is
even stronger after the earthquake than during later periods. The
top three most visited communes constituted, on average, 95% of
the visited locations during spring and 90% during summer and
fall. The frequency curves are almost identical for summer and
fall, providing additional evidence that the mobility patterns
returned to normal by this time.

Information about an individual’s top visited locations pro-
vides the simplest way to make predictions about a person’s
future location. As with Fig. 2D, we checked whether the accu-
racy of such a predictive procedure is dependent on the people’
travel distances. However, the more locations someone visits, the
lower is the expected frequency of the most visited locations. We
compensate for this effect by measuring the ratio between the
probability of finding a person in his or her most visited location
and the probability of finding an individual at a randomly chosen,
previously visited, location—the relative regularity R/R™™. The
results are presented in Fig. 2F, where we can see that the differ-
ence between the time periods is negligible. On the other hand,
the travel distances have, as expected, little effect—the relative
regularity is around 6 for people in PaP with r, ranging from
1 to 50 km and 4 to 6 for people with r, > 50 km. This means
that mobile phone users in PaP were, on average, at least four
times more likely to spend their time in the most frequent loca-
tion during the three periods than in a random location he or she
visited during that period.

In sum, we have found that despite the social disorder, the in-
creases in radius of gyration and the increases in average daily
travel distance that we observed after the earthquake, the move-
ments of the population remained highly regular and predictable.
We have also made the same analysis by taking all the days after
the earthquake as a single period and verified that the results are
similar (see the SI Appendix).

Evacuation and Return Behavior. We now turn to research questions
that explain and contextualize the high predictability shown in the
previous section. The issues analyzed here are also of direct re-
levance to relief agencies responding to disasters. We investigate
how soon after the earthquake people moved out, how far from
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PaP they moved, what proportion of people returned, and how
long time people stayed outside the capital after leaving. We also
look into a strong predictor of the specific geographical area to
which people decided to move after the earthquake, namely their
location during the preceding Christmas and New Year.

To investigate how soon people started to move out of PaP, we
select mobile phone users in PaP on the day of the earthquake
who subsequently left PaP at some point between the earthquake
and the end of June 2010 (170 d after the earthquake). We in-
clude all mobile phone users irrespective of their calling fre-
quency. We plot the proportion, P(¢), of people who left PaP for
the first time ¢ days after the earthquake and compare this dis-
tribution to distributions later during the year when considerable
stabilization had taken place. These five reference periods start
on the same weekdays on June 1, 8, 15, 22, and 29 and all end
170 d later (Fig. 34).

Interestingly, we see that the largest proportion of people left
not immediately, but three days after the disaster. Although this
finding is highly noteworthy, the delay may be partly due to re-
duced network capacity during the first few days after the earth-
quake. For ¢ > 3, the distribution of the fraction of evacuated
individuals is close to a power-law distribution P(¢) ~ =%, and re-
veals that the earthquake caused PaP residents to leave the city
much earlier than on normal days. Another interesting finding is,
again, the existence of weekly cycles in the reference data. These
cycles were absent after the earthquake and then reappeared
more than a month afterwards, indicating a return to normality.

So, how far did people move? Using the same inclusion criteria
and reference periods, we plot the proportional distribution of
the maximum distances the mobile phone users traveled after
the earthquake, measured from the center of PaP (Fig. 3B). A
majority (about 70%) of the individuals traveled quite short dis-
tances, maximally within 50 km of PaP center (note, however, the
small size of Haiti, Fig. 14). The distribution of maximum dis-
tances traveled by affected individuals is almost identical with
those traveled during normal times, suggesting that the extremes
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Fig. 3. Analysis of population movements out of PaP. (A) Shows the distri-
bution of PaP residents moving out of PaP for the first time by t days after the
day of the earthquake. In (B), we plot the maximum distance to the center of
PaP traveled by PaP residents. Reference curves represent sample periods
from June 1, 8, 15, 22, and 29 to 170 d after these dates. (C) Gives the cumu-
lative distribution of people’s relative distances on January 3 and 31 to their
locations on the day of the earthquake for four different categories of peo-
ple. (D) Gives the distribution of distance to the center of PaP for individuals
present in PaP on the sampled day and outside PaP 19 d later. Results for the
period after February 9 are averaged for clarity.
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of the trajectories are the same between the PaP population dur-
ing this first period after the earthquake and during normal times.
This is thus another aspect (apart from predictability) that was
conserved in the disaster.

The maximal travel distances do not, however, tell us where
people travelled. Studies from the 1985 Mexico City earthquake,
for example, have shown that people left the city to stay with re-
latives or friends elsewhere (27, 28). Recent analyses have also
shown a high correlation between the locations of people’s social
contacts and their mobility patterns (29). In our data, we can test
this hypothesis by comparing where people were at the time of the
earthquake and during the preceding Christmas and New Year
holidays (assuming most people spent this time with their family
and friends). In Fig. 3C, we select the people who were in PaP on
the day of the earthquake and group them into four categories,
depending on where they were on January 3 and 31: in-in for
those in PaP on both these dates; out-out for those not in PaP
on January 3 and 31; in-out for those in PaP on January 3 and not
in PaP on January 31; and out-in for those not in PaP on January 3
and in PaP on January 31. For these groups, we show the cumu-
lative probability distributions of distances between people’s
locations on January 3 and their locations in PaP on the day
of the earthquake (Adxnm,s) as well as the distribution of distances
between their PaP locations on the day of the earthquake and on
January 31 (Adg,). Results from this analysis are shown in Fig. 3C.
First, we notice that the distances for the out-out group are almost
identical on January 3 and 31, implying that the people who spent
the holidays outside PaP are quite likely to have moved to these
locations after a disaster. Second, people who were in PaP during
Christmas and New Year, but moved out after earthquake (in-
out), tend to have had longer travel distances than the others,
possibly because they had safe social connections farther away
and were thus less likely to travel to them during the holidays.
Finally, the Adxp,s distance distribution of the out-in group is
very similar to that of the out-out group, indicating that the rea-
sons these people did not move out of PaP after the earthquake
was not determined by their having a different geographic distri-
bution of social contacts than the out-out group.

If one can generalize these findings, they point to a way of
using the population distributions during the holidays as a way
to estimate the distribution of displacement during a disaster.
We have confirmed our results on the level of the smallest admin-
istrative area in Haiti, the communal section (a total of 570 com-
munal sections). For people in PaP on the day of the earthquake
who were outside PaP on both days (out-out), 68.5% were in the
same communal section on January 31 as they were on January 3.
The percentage rises to 85.5% when we use the larger adminis-
trative area of department (province).

We now relate the travel distributions in Fig. 3C to normal
mobility patterns. We analyze two groups of people—individuals
in PaP on December 1, 2009 and individuals in PaP on the day of
the earthquake (January 12, 2010), and we use as reference the
groups of individuals present in PaP on Tuesday after February 9.
For these groups, we plot (Fig. 3D) the cumulative distribution of
distances from PaP center to the individuals’ locations 19 d after-
wards (on December 19, January 31, etc.). Again, the postearth-
quake distributions are very similar to those of the reference
periods. Differences consist of a slightly higher proportion travel-
ing longer distances, possibly for the same reasons as discussed
for the Christmas and New Year analysis above. There is also a
small variation in the short to intermediate distances (30 to
70 km). The difference when comparing the postearthquake dis-
tributions in Fig. 3B (red curve) and Fig. 3D (red curve) is the
large proportion of very short trips in the former. This is due
to that Fig. 3B also captures a large number of persons who stray
outside the city boundaries for short periods of times, while
Fig. 3D captures predominantly those who left for a longer per-
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iod. A further analysis of the duration people stay outside PaP can
be found in the SI Appendix.

In order to investigate the potential bias from differences in
calling frequencies, we have repeated all analyses for subgroups
of users with different calling frequencies. These analyses reveal
that the results overall are robust. For analyses where time or
duration is an outcome (Fig. 34), the conclusions in the text
remain when analyzing groups with different calling frequencies,
although the exact size of the differences between the earthquake
and reference periods should be interpreted with caution (see SI
Appendix).

Discussion

We have shown that, despite sharp changes in people’s mobility
patterns after the tragic earthquake of January 12, 2010, in Haiti,
the predictability of people’s movements over the three-month
period after the earthquake was very high and remained un-
changed in comparison to later parts of the year after consider-
able stabilization had taken place. We show that the destinations
of people who left the capital early (during the first three weeks
after the earthquake) were highly correlated to their mobility
patterns during normal times, and specifically to the locations at
which people had significant social bonds, as measured by where
they spent Christmas and New Year holidays.

The above findings imply that population movements follow-
ing large-scale disasters may be significantly more predictable
than previously thought. Given the fundamental importance of
knowing the locations of affected populations during disaster
relief operations, these findings suggest that disaster planning
and response may be significantly improved. On a more abstract
level, the results force a change in our conceptualization of dis-
asters as fundamentally chaotic events. People’s movements are
highly influenced by their historic behavior and their social bonds,
and this fact remained even after one of the most severe disasters
in history.

In the quest for a globally applicable model of human mobility,
the present study confirms several findings from high-income
countries, including the power-law distribution of travel distances
and the high predictability of travel trajectories during stable
social conditions (17). A further investigation in the SI Appendix
shows that for people in PaP, the waiting times until leaving PaP,
as well as the time until they returned, was power-law distributed,
both during normal days and after the earthquake, albeit with
different exponents. The results also highlight the very high mo-
bility of people during normal conditions and the importance of
taking these movements into account when investigating postdi-
saster movements.

Several limitations and avenues for future work exist (for
additional discussions, see ref. 13). First and foremost, the exact
correlation between disaster-related movements of people with
and without mobile phones needs to be better understood. We
have, however, shown very promising results in this area in earlier
research (13). Additionally, mobility patterns in different types of
disasters and different social contexts may vary considerably. The
present dataset covered 42 d before the disaster. Additional data,
including a longer period before the earthquake, would have
allowed better differentiations of people’s permanent place of
living, social contacts, and predisaster mobility patterns.

Another limitation is that the data set included only one loca-
tion update per day. This means that movements taking place
during the course of 24 h, especially people’s movements inside
their cities and home communes, will not be included in the data.
Granted this limitation, since our interest in this paper is primar-
ily on movements over distances that are sufficiently large to pre-
vent access to relief supplies, a daily resolution should provide the
most important features of mobility relevant to relief coordina-
tors. Yet another issue is how the societal changes during the
disaster affect the sampling. The mobile phone network suffered
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reduced capacity immediately after the earthquake, but was func-
tioning again within a few days. This may have contributed to bias
in the first week’s data, but does not alter our conclusions. Lack of
access to electrical charging could perhaps have reduced the
number of calls. However, power was also frequently interrupted
before the earthquake, and existing electric generators seem to
have supplied considerable charging capacity. The effects of fatal-
ities and the loss of phones in the disaster were circumvented by
only studying users present at both the beginning and end of the
dataset. Lack of possibilities to put credit on the phones shortly
after the earthquake could have been another bias. However, the
mobile phone operator, Digicel, supported their customers by
adding five USD in calling credit to all accounts after the disaster.
In summary, the results show that population movements fol-
lowing the Haiti disaster had a high level of predictability and
seemed highly influenced by people’s social support structures.
These findings form an important first step in forecasting the ef-
fects of large-scale disasters. With future research in other disas-
ter contexts, such forecasts are likely to become an important part
of national disaster preparedness planning and in predicting po-
pulation movements during ongoing disaster relief operations.

Methods

Radius of Gyration. Let T; = {t;, t,, -, t,} be the sequence of mobile phone
towers that person i visited during a period. Let r(t) be the location of t. Then
the radius of gyration of i's trajectory in the specific period is

(1]

where r = %Zi"ﬂ r(t¢) is the center of mass of the trajectory.
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Predictability. To evaluate the predictability, we (following ref. 17) use a mea-
sure of entropy, or disorder, that accounts for both the relative frequency of
the visited locations and the order of the visits:

S;=- Z P(T/)log,[P(T/)]. (2]

T, CT;

where P(T/) is the probability of finding a subsequence T/ in T;. Based on this
measure of entropy, one can estimate the upper bound of the success rate in
predicting the future location of the mobile phone user immediately after T,.
We get the maximum predictability, IT;, by solving a limiting case of Fano’s
inequality (a relation derived from calculation of the decrease in information
in a noisy information channel):

S; = H(I;) + (1 = 1I;) logy (N — 1), [3]
where
H(I1;) = ~TT;log, (I1;) — (1 —11;) log, (1 - TT;), (4]

and N is the number of distinct locations visited by person i (30-32).

ACKNOWLEDGMENTS. This project would not have been possible without
dedicated support from Digicel Haiti. We would especially like to thank
Maarten Boute, David Sharpe, Roy Ojiligwe, Jouvain Petit-Frere, Jean
Williama, Kello Julien, Luigi Roy, and Rabih Youssef at Digicel Haiti. P.H. ac-
knowledges financial support from the Swedish Research Council and the
WCU program through NRF Korea funded by MEST (R31-2008-000-10029-0).

19. Song C, Koren T, Wang P, Barabasi AL (2010) Modelling the scaling properties of
human mobility. Nat Phys 6:818-823.

20. Eagle N, Pentland A, Lazer D (2009) Inferring friendship network structure by using

mobile phone data. Proc Nat/ Acad Sci USA 106:15274-15278.

. Eagle N, Pentland AS (2009) Eigenbehaviors: Identifying structure in routine. Behav
Ecol Sociobiol 63:1057-1066.

22. Pentland A, Choudhury T, Eagle N, Singh P (2005) Human dynamics: Computation for

organizations. Pattern Recognit Lett 26:503-511.

23. Wesolowski A, Eagle N (2010) Parameterizing the dynamics of slums. AAAI Spring
Symposium 2010 on Artificial Intelligence for Development (AAAI, Stanford).

24. Archibold RC (January 13, 2011) Haiti: Quake’s toll rises to 316,000. NY Times, http:/
www.nytimes.com/2011/01/14/world/americas/14briefs-Haiti.html.

25. Schwartz T (2011) Building assessments and rubble removal in quake-affected neigh-
borhoods in Haiti. BARR Survey Final Report (LTL Strategies, Washington, DC) .

26. Institut Haitien de Statistique et d'Informatique (2009) Population totale, population
de 18 ans et plus menages et densités estimés en 2009. (Institut Haitien de Statistique
et d'Informatique, Port-au-Prince).

27. Quarantelli LE (1992) Human behavior in the Mexico City earthquake: Basic themes
from survey findings. (Disaster Research Center, University of Delaware, Newark).

28. Dynes RR, Quarantelli EL, Wenger D (1990) Individual and organizational response to
the 1985 earthquake in Mexico City, Mexico. (Disaster Research Center, University of
Delaware, Newark).

29. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: User movement in
location-based social networks. Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM, San Diego, CA), pp
1082-1090.

30. Kontoyiannis I, Algoet PH, Suhov YM, Wyner AJ (1998) Nonparametric entropy esti-
mation for stationary processes and random fields, with applications to English text.
IEEE Trans Inf Theory 44:1319-1327.

. Navet N, Chen S-H (2008) On predictability and profitability: Would GP induced trad-
ing rules be sensitive to the observed entropy of time series? Natural Computing in
Computational Finance, Studies in Computational Intelligence, eds A Brabazon and
M O’Neill (Springer, Berlin/Heidelberg), Vol 100, pp 197-210.

32. Fano R (1961) Transmission of Information; A Statistical Theory of Communications

(MIT Press, Cambridge, MA).

33. Clauset A, Shalizi CR, Newman MEJ (2009) Power-Law distributions in empirical data.

SIAM Rev 51:661-703.

2

3

PNAS | July 17,2012 | vol. 109 | no.29 | 11581

2
=
=
[}
=
=
=]
(v]
[}
w
7

APPLIED PHYSICAL

MEDICAL SCIENCES

SCIENCES



Supporting Information

Lu et al. 10.1073/pnas.1203882109

S1. Entropy analysis

In this section, we present further details relating to the en-
tropy analyses of the movements of mobile phone user present
in PaP on earthquake day. For convenience, we present our
results in the same order as in Ref. (1).

A. Data Processing. For each person the history trajectories
are a series of geo-tagged location IDs, which in our case are
tower IDs. Let X; = {x1,x2,...,x7} be sequence of daily lo-
cations observed for person i during the sampled 7" days. x;
equals the tower ID if person i is known on day j, otherwise
we mark z; “unknown”. Each tower ID z; is associated with
the projected coordinate r(x;). Since we analyze the travel
patterns of PaP individuals after earthquake, the total length
of string X;, T, is then 342 days (from January 12, 2010 to
December 9, 2010). To compensate for the relative short over-
all time, we segment the 342 days into three equal periods and
restrict our analysis to individuals who had less than ¢ = 30%
unknown days in all periods to achieve good statistics (com-
pared to g = 80% used in Ref. (1)). The final sample includes
303,623 qualified individuals.

B. Results. Radius of Gyration. The radius of gyration cap-
tures the size of the trajectory, that is, the “average” traveling
distance, as if the individual were a physical object. It is de-
fined as:

LS (r (a) — 1) [1]

k=1

rg =

I

where L is the number of observed locations for individual i,
L
and T = %kz:lr (zx) is the center of mass of the trajectory

X;. We can see from Fig.S1 that ry follows a fat-tailed dis-
tribution for PaP individuals, consistent with the result of (1,
2). The clear cut off for the distribution well around r, = 100
km, is due to the limits of Haiti’s borders.

Entropy. Entropy is a common measurement for dis-
orderedness, the larger the entropy, the greater the disor-
der, and consequently it implies lower predictability. Here,
we inherit the series of entropy measurements studied in
Ref. (1): (i) the random entropy, S™*¢ = log,L;, captur-
ing the predictability by assuming each person’s whereabouts
is uniformly distributed among the L, distinct locations; (ii)

the temporal-uncorrelated entropy, S™¢ = _21521 prlog,pk,
where py is the frequency at which the person visited tower
k, characterizing the heterogeneity of visiting patterns be-
tween different locations; (iii) the true entropy (3), S =
- ngcxi P(X])log,[P(X})], where P(X]) is the probability

of finding a sub-sequence X; in X;, considering both spatial
and temporal patterns.

For each person 4, we calculate ™" "¢ and S accord-
ing to the above definitions and the obtained distribution
P(s**d), P(S""¢), and P(S) are shown in Fig.S2. Similar
to Ref. (1), we observe a prominent shift from P(S™") to
P(S). The distribution of random entropy P(S™") peaks
around S***¢ ~ 5, indicating that if we assume that individu-
als randomly choose locations the next day, a typical individ-

ual could be found on average in any of 25" ~ 32 locations.

On the other hand, if we utilize information contained in the
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frequency and sequence order of the trajectory of individuals,
the uncertainty in a typical individual’s whereabouts is only
25" = 9235 & 5 and 2 = 21.4 & 2.6, respectively.

Mazimum Predictability. Fano’s inequality (4, 5) gives an
upper limit for the predictability of an individual (II), with
entropy F moving between N locations:

I < 1" (E, N) [2]
where ITF° is given by
E= H(I™) + (1- 1™ )log,(N~ 1) [3]
and
H(HFanO) _ _HFanolOg2 (HFaI’JO) - HFanO)logz(l _ HFanO)

[4]

Fano’s inequality reveals that, providing information given
in F, the accuracy of the best possible predictive algorithm
cannot exceed ITFm°,

Let Hrand _ ]-—[Fano(Srand7 ]\]’)7 ITune — l—IFano(‘Svunc7 N) and
mex — l—IFaer(S7 N), since Srand Z gunc 2 517 I™2% then
provides the ultimate best possible predictive power since it
utilize maximum information from S. We consequently refer
to IT™** as the “maximum predictability” in the context. The
distribution of the above predictability quantities, P(IT**%),
P(I1""¢) and P(II"™**) are shown in Fig. S3.

The distribution of P(IT™**) peaks around II"™** = (.85,
meaning that we typically have an upper limit of 85% accuracy
to predict the typical person’s next destination following the
earthquake. These findings show that, even in a extreme dis-
aster, human movements over the three three-month periods
remained highly predictable. People moved farther but not
less regularly in the tumultuous time right after the disaster.
We also observe a wide distribution of P(IT""°), which peaks
around TT""¢ ~ 0.67, and an extremely left shifted P(TT"**)
with the peak II'™" = 0. The above analysis reveals that
neither IT'*"¢ nor 1" are effective predicative tools, and a
significant share of predictability is encoded in the temporal
order of the visitation pattern, as concluded in Ref. (1).

rg vs. the mazimum predictability. From above analy-
sis, we have found that despite the fat-tailed distribution of
the radius of gyration among PaP inhabitants, the maximum
predictability, TI"™** narrowly peaks around IT™** ~ (.85,
implying the potential independence of predictability on the
travel distances. We investigate this correlation by plotting
the log-binned average of II"™** over ry, as shown in Fig. S4.
Strikingly, contrary to what we observed in Ref. (1), which
found that II"™** is largely independent of r4 for r4 > 10 km,
for the PaP inhabitants after earthquake, there is a steady
increase in maximum predictability when 74, varying from 10
to 110 km, indicating that individuals with r4 covering a hun-
dred kilometers are even much more predictable than those
whose lives are limited to several kilometers.

Frequency of top visited locations. The simplest predictive
algorithm is to use the most frequently visited locations to
predict the person’s next destination. Thus, the frequency of
the top n visited locations, ﬁ(n), provides an upper bound
for II™**, In addition to tower, we also use a more practical
location indicator, the lowest Haitian administrative region
level “commune sections” to calculate fI(n) We can see from
Fig. S5 that a typical PaP individual spent 77% and 90% of
his or her time on the most frequently visited towers and sec-
tions when n = 2, respectively. Compared to 1I(2) ~ 60% in
Ref. (1), these values are relatively higher. The cause of such



a difference may be varied: first, the density of towers in PaP
may be relatively sparser than in developed countries; second,
there are fewer transportation facilities in Haiti, which hinders
the possibility of visiting diverse towers; and third, the trajec-
tory data was collected on a daily basis and are much shorter
than those used in Ref. (1). These reasons also yield a much
quicker convergence of TI(n) to IT = 1.

rq vs. relative regularity. Relative regularity is defined
by the ratio between the probability of finding an individ-
ual at the most visited location, R = 1:[(1)7 and the prob-
ability of finding an individual at a randomly picked tower,
Rrard = 1/L;: R/R*™. The relative regularity compensates
for the limit of the above analysis in that the more locations
an individual visits, the lower is the expected frequency of the
most visited locations. Similar to Fig.S4, we plot the mean
relative regularity, (R/R™™¥), against 74, as shown in Fig. S6.
Strikingly, again, we find a steady increase in (R/R™"%) for
rg € [1km,80km]. There is a drop off in ry &~ 100 km; how-
ever, the value of (R/R"™™?) remains higher in a large range
of ry (rg € [1km, 20km]).

S2. Analysis of return behavior

Now we turn to the question of the pattern of return to PaP.
We select all individuals who were present in PaP on the day
of the earthquake, who left PaP some time after the earth-
quake and who then returned to PaP before July 1 (170 days
after earthquake). We plot the probability distribution of the
durations of people’s first stay outside PaP and compare this
with sample periods of the same length starting on the same
weekdays on June 1, 8, 15, 22 and 29, respectively (Fig. STA).
The differences between the reference curves (green) are ex-
tremely small — all lines basically fall on top of each other.
Interestingly, the distributions follow a power-law functional
form quite closely. This means that most people who left the
city during normal times stayed outside for relatively short pe-
riods of time, while the differences between people were very
large. This general pattern remained after the earthquake,
but the difference between people became even larger with a
higher proportion spending a longer period away.

As people moved out at different points in time, it is im-
portant for government decision makers and relief agencies to
know the proportion of people returning on each day after
a disaster. The overall trend in these analyzes (Fig.S7B) is
that the fraction of returning people decreases exponentially
with time, although the exact shape of the curve is sensi-
tive to people’s calling frequency. The proportion of persons
who returned to PaP is higher one week to a month after the
earthquake than during the reference periods. However, this
larger fraction can be explained by the fact that more people
moved out during the beginning of the earthquake period, as
we discussed in the context of Fig.3A. The Pearson correla-
tion between the dates the peoples leave and return is quite
high at 0.71.

S3. Sensitivity analysis on data sparseness

A. Entropy and predictability. The validity of the algorithm
used for calculating S has been evaluated comprehensively
over different lengths L (from L, = 48 data points to
Lmax = 2352 data points), as well as for different proportions
of unknown locations in the trajectories (1).

It has been shown that for a typical user with a trajectory
as short as 48 data points and with half of the locations in
the trajectory unknown, the estimation error of the algorithm-
based S is only about 25% (1). Comparatively, in our study,
the length of the trajectories are L = 114 data points (cor-
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responding to a 4.75 days hourly trajectory in Ref. (1)), and
the proportion of unknown locations, ¢, in our analyzes on en-
tropy and predictability is at most 30%. The estimation error
based on these parameters is thus expected to be considerably
smaller than 10%. See Fig. S6D in Ref. (1).

To confirm the inferences above and to investigate how
sensitive our results are to inclusion of additional and increas-
ingly sparse trajectories, we have produced separate analyzes
for groups with different proportions of missing data. We
construct three groups of users with ¢ < 30%, ¢ < 40% and
g < 50%. The distributions of S™"d §"¢ and S during
each period, are shown in Fig. S8. We can see that the distri-
butions of ™" and S"™° are virtually unchanged when the
proportions of unknown locations increase and this holds true
for all three periods. The distributions of S become slightly
left-shifted with increasing values of q. This tendency is some-
what more pronounced during the spring period although the
overall changes are small.

We have also made the same separate analyzes on distribu-
tions of the maximum predictabilities, II"™** with increasing
data sparseness (Fig.S9). As expected from the entropy dis-
tributions, TI™** changes very little when the proportions of
unknown locations increase. The left-shifted distribution of
S above results in a slight increase in IT™**, which remain at
around 0.8 to 0.9.

In summary, these sensitivity analyzes do not provide ev-
idence for serious bias due to the relatively low temporal res-
olution of this data set.

B. Travel patterns. Calling frequency directly affects the num-
ber of observations in our data and users who rarely call are
consequently under-observed. Consequently, if there were a
difference in the travel patterns of mobile phone users with dif-
ferent calling frequencies, the results of our study would be bi-
ased towards the behavior of people who call often. We there-
fore investigated whether we observe different travel patterns
in groups with high calling frequency compared to groups with
low calling frequency. To do this, we divide the mobile phone
users into four groups according to the number of active phone
calls. Specifically, if f is the proportion of days a user made
a call during the study period, then each user ¢ is categorized
into a quartile group where f fits in group 1 for 0 < f < 25%,
group 2 for 25% < f < 50%, group 3 for 50% < f < 75%,
and group 4 for 75% < f < 100%.

We then produce, for the four groups, the same analyzes
on daily traveling distances, evacuation and return behaviors
as shown in the main paper. Like in the main paper, we differ-
entiate between people present in PaP on the earthquake day
(PaP group) and people outside PaP on this day (non-PaP
group).

Distributions of daily travel distances. We start by look-
ing at the changes in daily travel distance distributions of the
four groups (of the preceding section) before and after the
earthquake by comparing the fitted power law exponent «,
for the PaP group and the non-PaP group, see Fig. S10. Here
we show the daily value of «a, as opposed to the weekly aver-
age in Fig. 1F. The patterns for the four groups with different
calling frequencies are in concurrence with the results shown
in Fig. 1F. As in Fig. 1 F, there are clear differences when com-
paring the « of the PaP group and the non-PaP group. This
difference starts around the Christmas-New Year time and
then becomes suddenly more pronounced at the time of the
earthquake, after which the differences between the groups
largely disappeared by the end of the spring. We also note a
short sharp change during Easter.

Remaining analyzes where time and durations are out-
comes. Groups with low calling frequency are under-observed



in the data and this fact may be particularly problematic when
studying events taking place during short time intervals. To
investigate the effects of low calling frequency on the ana-
lyzes that are time-dependent (Fig.34 and Fig. S7), we plot
separate curves for the four groups with different calling fre-
quencies (see Fig. S11). We can see that during the early part
of the analysis periods, larger proportions of users from the
frequently calling group (group 4) are observed, compared
to users from group 1, group 2, group 3. This difference is
very clear for the reference periods. For example, under nor-
mal conditions, only about 1% of the most frequent callers in
the PaP groups are observed to leave PaP on the second day
after the start of observations during the reference periods,
while the proportion for group 4 is above 5%. These analyzes
show that the exact proportions of people leaving at a certain
day should be interpreted with caution, especially also since
the network experienced substantial problems during the first
days. However, it is difficult to imagine a plausible scenario
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where changes in calling behaviors would invalidate the main
conclusions of these analyzes i.e. the earlier evacuation times
and the increased duration of time spent outside PaP after
the earthquake, as well as the functional power-law shapes
observed.

Remaining analyzes where travel distances are outcomes.
We then proceed to check whether the under-observation of
infrequent callers will affect our conclusions regarding the re-
maining traveling distance distributions. We thus replotted
Fig.3B, C' and D and divided each group into the same four
sub-groups as above, based on their calling frequency, i.e.
group 1 to group 4. The analyzes show that for all travel
distance distributions there are only very small differences be-
tween groups of people with different calling frequency. This
is the case for all the reference periods and the earthquake
periods. These results strongly suggest that differences and
changes in calling frequencies did not bias the results regard-
ing travel distance distributions.
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F|gS7 Analysis of return behavior. Panel A shows the distribution of duration of PaP persons’ first stay outside PaP during the post-earthquake and autumn periods. B
shows the number of days after the first day outside PaP when a person first returned to PaP. The reference curves represent sample periods from June 1, 8, 15, 22, 29, 2010

and 170 days after.
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Fig.S8. A Distribution of entropies 5™ SUNC G during the spring period, for users with q less than 30% (solid line), less than 40% (dashed line) and less than 50%

(dash-dotted line), B and C' shows the corresponding distributions for the summer and autumn periods.
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Fig.S9. A Distributions of IT™3* during the spring period, for users with q less than 30% (solid line), less than 40% (dashed line) and less than 50% (dash-dotted line), B
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and C' shows the corresponding distributions for the summer and autumn periods.

6 | Lu et al. www.pnas.org/cgi/doi/10.1073/pnas.1203882109
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Fig. S10. The change of the exponent v of the power-law distribution of daily travel distances, P(d) ~ d~%, for people with different calling frequency f: A
0< f<25%; B25% < f <50%; C50%< f<75%; D75%< f<100%.
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Fig. S11. Analyzes focusing on time as an outcome for people with different calling frequency: 0 < f < 25% (group 1), 25% < f < 50% (group 2),
50% < f < 75% (group 3), and 75% < f < 100% (group 4). A shows the distribution of PaP residents moving out of PaP for the first time by ¢ days after the
day of the earthquake. B illustrates the distribution of duration of PaP persons’ first stay outside PaP during the post-earthquake and autumn periods. C' shows the number
of days after the first day outside PaP when a person first returned to PaP. The reference curves (shown as dotted lines of the same color for a group) represent sample periods
from June 1, 8, 15, 22, 29, 2010 and 170 days after.
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Fig. S12. Analyzes focusing on distances as an outcome for people with different calling frequency: 0 < f < 25% (group 1), 25% < f < 50% (group 2),
50% < f < 75% (group 3), and 756% < f < 100% (group 4). Since the distributions are extremely similar between the four groups, the same color and shape is
used for all groups to increase visual clarity. A maximum distance to the center of PaP traveled by PaP residents. Reference curves represent sample periods from June 1, 8,
15, 22, and 29 to 170 days after these dates. B cumulative distribution of people’s relative distances on January 3 and 31 to their locations on the day of the earthquake. C'
distribution of distance to the center of PaP for individuals presented in PaP on the sampled day and outside PaP 19 days later. Results for the period after February 9 are
averaged for clarity.



