
Applied Mathematics and Computation 217 (2011) 6401–6408
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Finding the shortest paths by node combination

Xin Lu a,b,c,⇑, Martin Camitz d

a College of Information Systems and Management, National University of Defense Technology, Changsha, China
b Department of Sociology, Stockholm University, Stockholm, Sweden
c Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden
d Department of Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden

a r t i c l e i n f o a b s t r a c t
Keywords:
Shortest path
Node combination
Node combination algorithm
Dijkstra’s algorithm
Weight matrix
0096-3003/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.amc.2011.01.019

⇑ Corresponding author at: Department of Sociolo
E-mail address: lu.xin@sociology.su.se (X. Lu).
By repeatedly combining the source node’s nearest neighbor, we propose a node combina-
tion (NC) method to implement the Dijkstra’s algorithm. The NC algorithm finds the short-
est paths with three simple iterative steps: find the nearest neighbor of the source node,
combine that node with the source node, and modify the weights on edges that connect
to the nearest neighbor. The NC algorithm is more comprehensible and convenient for pro-
gramming as there is no need to maintain a set with the nodes’ distances. Experimental
evaluations on various networks reveal that the NC algorithm is as efficient as Dijkstra’s
algorithm. As the whole process of the NC algorithm can be implemented with vectors,
we also show how to find the shortest paths on a weight matrix.

� 2011 Elsevier Inc. All rights reserved.
0. Introduction

Let G = (V,E,W) represent a network containing N nodes (vertices), where V = {v1,v2, . . . ,vn} is the set of nodes, E = {eij j if
there is a link from vi to vj} is the set of edges and W = {wij j1 6 i, j 6 N} is the weight matrix for E. Given two nodes vs, vt of G,
the shortest path problem can be defined as how to find a path with the minimum sum of the weights on the edges in a vs, vt-
path. Generally, vs and vt are called source node and sink node, respectively.

The shortest path problem is one of the most fundamental network optimization problems with widespread applica-
tions [1–4]. Among the various shortest path algorithms developed [5–12], Dijkstra’s algorithm is probably the most
well-known. It maintains a set S of solved nodes, comprising those nodes whose final shortest path distance from the
source vs has determined, and labels d(i), storing the upper bound of the shortest path distance from vs to vi. The algorithm
repeatedly selects the node vk 2 VnS with the minimum d(i), adds vk to S, and updates d(i) for nodes that are incident to vk

(relaxation) [2,13]:

Step 0. Set d(vs) = 0, for other nodes, d(vj) = wsj, S = {vs}, Q = VnS.
Step 1. Select a node vk from Q such that dðvkÞ ¼minv j2Q dðv jÞ, if d(vk) =1, stop, otherwise go to Step 2.
Step 2. Set S = S [{vk}, Q = Qn{vk}. If Q = ;, stop, otherwise go to Step 3.
Step 3. for every vj 2 Q, update d(vj) = min{d(vj),d(vk) + wkj}. Go to Step 1.

In practice, Dijkstra’s algorithm relies heavily on the strategies used to select the next minimum labeled node (Step 1) and
the data structure utilized to maintain the set S. Readers can refer to [1,14] for more detailed discussions on these topics.
When Q is implemented as an ordinary linked list or vector, the algorithm runs in O(jVj2) time. It is O(jEjlgjVj) if Q is imple-
mented as a binary heap and O(jEj + jVjlgjVj) when as a Fibonacci heap [13,15].
. All rights reserved.

gy, Stockholm University, SE-106 91 Stockholm, Sweden.

6402 X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408
Though the efficiency and various applications of Dijkstra’s algorithm have been widely studied [16–20], Dijkstra’s algo-
rithm may not be easily understood, especially when implementing the labeling method [1,16,17,19,21]. In this paper, we
introduce another way to implement Dijkstra’s algorithm, called the Node Combination (NC) algorithm, with which the
source node iteratively combines nodes into a new source node and updates the edge weights of the remaining node. When
all of the nodes in the connected component of the source node are finally combined into a single node, the shortest paths
from the source node to all other nodes are known. With the method of node combination, the process of finding shortest
paths is comparatively simple and much more vivid than with Dijkstra’s algorithm. Though there are many ways in which
the NC algorithm can be improved on in terms of efficiency, the focus of this paper is on simplicity and comprehensibility. NC
also compares favorably to Dijkstra’s in terms of memory efficiency.

Much like Dijkstra’s algorithm, a slight variation in the NC algorithm also produces the actual shortest paths, not just the
lengths of the shortest paths.

This paper is organized as follows: in Section 1, we define what is meant by the combination of nodes. In Section 2, we
introduce and illustrate by example the fundamental idea and explicit description of NC algorithm. Section 3 discusses the
time complexity, and evaluates the performance of the NC algorithm compared with Dijkstra’s algorithm. In Section 4, we
show how to find the shortest paths using the NC algorithm and demonstrate implementation on a weight matrix. Finally,
we summarize our results and draw conclusions.
1. Node combination

Definition. Let vi, vj be two connected nodes of graph G = (V,E,W), the combination of vi and vj is the replacement of vi and vj

with a new node whose incident edges are the edges incident to vi or vj. The resulting graph is denoted as G(vi�vj) (see Fig. 1).
We can see from Fig. 1 that the new node maintains connections with nodes 5 and 7, which were connected with node 3

before combination.
After a combination, the number of edges incident to the start node will increase by the number of edges incident to the

combined node, less one. Node combination may lead to multiple edges, for example, if there were an edge between nodes 1
and 7 in Fig. 1(a), there would be two edges between the new node and node 7 after combination. Node combination is in
many ways similar to edge contraction in graph theory except for the appearance of multiple edges.

Without loss of generality, in this paper we consider only undirected networks with nonnegative edge weights and with-
out self-loops.
2. Node combination algorithm

2.1. Fundamental idea

The fundamental idea of the NC algorithm is to combine nodes instead of maintaining the labeling sets in Dijkstra’s algo-
rithm. Suppose that all nodes in the network are connected by ropes. The source node is placed in a pool, and other nodes are
successively dragged into the pool one by one. Over time, there will be fewer and fewer nodes outside, and finally all nodes
will have been dragged into the pool.

The combined nodes correspond to the set of solved nodes whose distances have been established in Dijkstra’s algorithm.
The adjacent neighbors of the combined node correspond to the set of potential nodes from which the closest one is picked.
In the meantime, we can update the edge weights to store the distance labels from the source node, instead of maintaining a
vector of distances, making the procedure more comprehensible.

2.2. Algorithm and proofs

Given a nonnegative weighted network G = (V,E,W) with N nodes, let WN�N be the weight matrix, vs be the source node, d
be the vector whose element d(vj) is to save the distance between vs and vj, then iterations of NC algorithm can be described
as follows:
Fig. 1. Combine nodes 1 and 3. (a) before combination, (b) after combination.

X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408 6403
Step 0. Initialization. Set d(vs) = 0.
Step 1. Find the nearest neighbor. Select vk from the neighbors of vs, which makes wsk = min{wsj}, let d(vk) = wsk. If there are no

adjacent nodes to vs, stop.
Step 2. Combine node. Delete vk, V = V � vk. If V = ;, stop.
Step 3. Modify edge weights. For each edge ekj, Update wsj = min{wsj,wsk + wkj}. Go to Step 1.

The correctness of this algorithm can be proved by the following theorems:

Theorem 2.1. NC algorithm solves the Single-Source Shortest Path (SSSP) problem in an increasing order of d(vk).
Proof. Let wsj and wðkÞsj be the weights of edge esj before and after combination of node vk, respectively. Because

d(vk) = min{wsj} = wsk, we only need to prove min wðkÞsj

n o
P wsk for "vj 2 V � vk after node combination. According to

Step 3, the above inequality can be written as min wðkÞsj

n o
¼min min wsj;wsk þwkj

� �� �
P wsk for "vj 2 V � vk, which is

true. h
Theorem 2.2. Given a network G = (V,E,W) with nonnegative edge weights and a source node vs 2 V, NC algorithm computes d(vk)
for every vk 2 V.
Proof. Note that the edge weights are non-increasing during the algorithm. Let S be the set of solved nodes and wðkÞsj be the
latest weight of edge esj when jSj = k.

(1) When jSj = 0 or jSj = 1, it is evident that d(vs) = 0 and esh is the shortest path from vs to its nearest neighbor vh. This

means that wð1Þsh ¼min wð1Þsj

n o
¼ dðvhÞ.

(2) Suppose that vf is the first node that NC fails to find the shortest path for, i.e., wðkÞsf ¼minj2V�S wðkÞsj

n o
> dðv f Þ. (We have

assumed jSj = k when combining vf.)

(a) We know that the shortest path cannot be esf, since then wð0Þsf ¼ dðv f Þ < wðkÞsf , a possibility rules out by the NC

algorithm.
(b) Let vm be the last node rather than vf in the shortest path from s to f. We then have vm R S for jSj = k. For jSj– k when

combining vm, wðiþ1Þ
sf ¼min wðiÞsf ;w

ðiÞ
sm þwð0Þmf

n o
¼ dðvmÞ þwð0Þmf ¼ dðv f Þ which contradicts our hypothesis.
So we can assume the shortest path is vs ? � � �? vx ? vy ? � � �? vm ? vf, in which vy is the first node not combined.

When vx was combined, dðvyÞ ¼ wði0þ1Þ
sy 6 wði0þ1Þ

sf 6 dðv f Þ. However, now uf is selected to be combined, so wðkÞsy P wðkÞsf , since

the edge weights are non-increasing, the two inequalities must be equalities: dðvyÞ ¼ wði0þ1Þ
sy ¼ wðkÞsf ¼ dðv f Þ, which again

contradicts our hypothesis. Thus when each node was combined: wsk = min{wsj} = d(vk). h

2.3. An example

Fig. 2 illustrates the execution of NC algorithm to find the distances between node 1 and all other nodes in the network,
where d(i) is the distance from node 1 to node i.

(1) Combine nodes 1 and 2. The source node 1 first finds its nearest neighbor, node 2, and immediately gains the distance
from 1 to 2, which is d(2) = 5. Then node combination is carried out, modifying w1,5 = min{w1,5,d(2) + w2,5} =
min{1,5 + 10} = 15.

(2) Combine 1, 3. The nearest neighbor of the new starting node 1 is node 3, d(3) = 8. Then the node combination modifies
w1,5 = min{w1,5,d(3) + w3,5} = min{15,8 + 10} = 15, and w1,7 = 18.

(3) Combine 1, 6. d(6) = 8, modify w1,5 = 13.
(4) Combine 1, 4. d(4) = 10, modify w1,7 = 17.
(5) Combine 1, 5. d(5) = 13, modify w1,8 = 19.
(6) Combine 1, 7. d(7) = 17, modify w1,8 = 19.
(7) Combine 1, 8. d(8) = 19.
(8) If all nodes have been combined together, terminate.

From the above iterations, we can see that the NC algorithm can solve the SSSP problem by N � 1 times of node combi-
nation for a connected network with N nodes. The distance of shortest paths from node 1 to other nodes (2 to 8) are: 5, 8, 10,
13, 8, 17, and 19.

11

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

 (a) dd(1)=0

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

 (b) dd(2)=5
 d(5)=min(d(2)+10, d(5))=15.

d

d

 (c) dd(3)=8
 d(5)=min(d(3)+10, d(5))=15.
 d(7)=min(d(3)+10, d(7))=18.

d

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

 (d) dd(6)=8
 d(5)=min(d(6)+5, d(5))=13.

d

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

 (e) dd(4)=10
 d(7)=min(d(4)+7, d(7))=17.

d

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

 (f) dd(5)=13
 d(8)=min(d(5)+6, d(8))=19.

d

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

(g) dd(7)=17
 d(8)=min(d(7)+3, d(8))=19.

d

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6

(h) dd(8)=19

d

1

6

2 5

4

3
7

10

10

8 10
710

5
8

5

83

6
1

6

5

4

3
7

10+5=15
10

8
10

7
10

5
8

83

6

1

6

5

4

3
7

15
10

8
10

7
10

5
8

83

6 1

6

5

4
7

15<18 select

10+8=18>15 delete

10+8=18

7
10

5
8

83

6

1

6

5

4
7

15

18

7
10

5
8

83

6

(a) dd(2)=5 (b)

(c) dd(3)=8 (d)

(e) dd(6)=8

1

5

4
7

15>13 delete

18

7
10

5+8=13<15 select

83

6

(f)

1

5

7

18>17 delete7+10=17<18 select

13

83

6

(h)

1

5

4
7

18

7

10

13

8

3

6

(g) dd(4)=10

(j)(i) dd(5)=13

1

5

717

13

8

3

6

1

717

8

3

6+13=19

(k) dd(7)=17

1

717

8

3

19

(l)

1 8
3+17=20>19 delete

19<220 select

(m) dd(8)=19

1 819 1

(n)

Node Combination Algorithm Dijkstra’s Algorithm

1 2 3 4 5 6 7 8
0 5 8 10 ∞ 8 ∞ ∞

1 2 3 4 5 6 7 8
0 5 8 10 15 8 ∞ ∞

1 2 3 4 5 6 7 8
0 5 8 10 15 8 18 ∞

1 2 3 4 5 6 7 8
0 5 8 10 13 8 18 ∞

1 2 3 4 5 6 7 8
0 5 8 10 13 8 17 ∞

1 2 3 4 5 6 7 8
0 5 8 10 13 8 17 19

1 2 3 4 5 6 7 8
0 5 8 10 13 8 17 19

1 2 3 4 5 6 7 8
0 5 8 10 13 8 17 19

Fig. 2. Comparison of the NC algorithm and Dijkstra’s algorithm.

6404 X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408
3. Complexity and experimental evaluation

A naive approach to implement the node combination is to set the incident edges’ weights of the combined node vk to
infinity: wik =1 for vi 2 V or the maximum value depending on the language. This ensures proper ordering of the remaining
node. To save computing time it is smarter to maintain a status vector V to identify the nodes that have been combined. The

X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408 6405
practical implementation reintroduces a labeling set, as in Dijkstra’s algorithm, that was removed for the conceptual
outline. Suppose the network is stored as an adjacent matrix, the pseudocode using a status vector V can be written as
Algorithm 1:

Algorithm 1: Node_Combination(G,s)

1 W[s,u] :¼ 0, vu :¼ vs, V :¼ V � {s} /⁄Initialization⁄/
2 while W[s,u] <1 and jVj > 0
3 V :¼ V � {u} /⁄Node Combination⁄/
4 for each j in V
5 W[s, j] :¼min{W[s, j],W[s,u] + W[u, j]} /⁄updating edge weights⁄/
6 vu :¼ the nearest neighbor of s in V /⁄finding the nearest neighbor⁄/
/⁄at the end of the algorithm, the sth row in W contains the corresponding distances⁄/

For comparison, we provide an implementation of Dijkstra’s algorithm.

Algorithm 2: Dijkstra(G,s)

1 d[s] :¼ 0, vu :¼ vs, V :¼ V � {s} /⁄Initialization⁄/
2 while d[u] <1 and jVj > 0
3 V :¼ V � {u} /⁄mark u as visited⁄/
4 for each j in V
5 d[j] :¼min{d[j],d[u] + W[u, j]} /⁄relaxation⁄/
6 d[u] :¼ the smallest value in d for nodes in V
/⁄at the end of the algorithm, vector d contains the corresponding distances⁄/

From the above pseudocode, we can see that the potential distances are now recorded as updated edge weights so that no
additional memory is required. As the times of comparison and addition in Steps 2 and 5 are the same in both algorithms, the
NC algorithm computes the SSSP problem with complexity O(N2) when the network is stored as an adjacency matrix. This
provided of course that no improved searching strategy is implemented for finding the nearest neighbor.

To show the validity of this algorithm, simulations are performed for Algorithms 1 and 2. As the focus of this paper is
simplicity and memory efficiency, rather than run time efficiency, we refrain from comparing the two algorithms using alter-
native data structures. Both algorithms are coded with the same data structures. Algorithms are coded in C and run on an
Intel Core Duo CPU with a 2.4 GHz processor, 3 Mb of cache and 3 Gb of RAM.
0 0.5 1 1.5 2

x 10
4

0

20

40

60

80
ER Network

0 0.5 1 1.5 2

x 10
4

0

20

40

60
Regular Network

0 0.5 1 1.5 2

x 10
4

0

20

40

60
WS Network

N

sq
u

ar
e

ro
o

t
o

f
ru

n
n

in
g

 t
im

e
(m

s)

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80
BA Network

N

NC
Dijkstra

NC
Dijkstra

NC
Dijkstra

Fig. 3. Average running times of the NC algorithm and Dijkstra’s algorithm. Average degrees are 10, 6, 6, 6, respectively. All networks are connected, and the
edge weights are random numbers between 1 and 10. Each simulation calculates the shortest paths from node 0 to all others. Running times are the
averaged values of 100 simulations.

6406 X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408
Four kinds of networks are tested: the ER random networks, [22] regular networks, WS small-world networks [23], and
the BA scale-free networks [24,25]. Detailed descriptions of these networks can be found in [26,27]. The square roots of the
running time in milliseconds are displayed in Fig. 3. The NC algorithm uses less memory than Dijkstra’s algorithm but, as we
can see from the figures, it is as efficient for all types of networks.
4. Further discussion

4.1. Implementation of finding the shortest paths

The NC algorithm can be easily implemented to find the shortest paths, not just the distances. Let Psj(1 6 j 6 N) be the
shortest path from the source node vs to node vj, usj be the second last node on Psj. To record usj, we can declare a vector
P with length of N, and initialize all the elements as s. If wsj is updated in Step 3 (wsj wsk + wkj), set P(j) = k.

When the NC algorithm terminates, P records the information of shortest paths between vi and all the other nodes.
To find the shortest path between vs and vj, we can trace from P(j): if usj = P(j) = k, than usk = P(k), . . ., till P(k) = s. The shortest
path is:
s; . . . ; PðPð� � � PðjÞÞÞ; . . . ; PðPðjÞÞ; PðjÞ; j
Fig. 4. Weight matrix implementation of NC algorithm.

X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408 6407
4.2. Weight matrix implementation of NC algorithm

As has been done with Dijkstra’s algorithm, we can implement the NC algorithm on the weight matrix to calculate dis-
tances from source node vs to other nodes:

Step 0. Set wss = 0 and draw a circle on this element, cross out the sth column of the weight matrix WN�N.
Step 1. Circle the minimum element of the sth row. If all the elements in the sth row have been circled or the value of un-

circled elements are 1, stop.
Step 2. For each element wsj which has not been circled in the sth row, update wsj = min{wsj,wsk + wkj}, where wsk is the min-

imum value found in Step 1. Cross out the kth column of WN�N. Go to Step 1.

When the iteration is finished, the values of elements in the sth row are the distances from vs.
Using the network of Section 2.3, Fig. 4 illustrates how to calculate shortest paths on the weight matrix with the NC algo-

rithm. Elements marked with a dot underneath are the edge weights modified by wsj = min{wsj,wsk + wkj} in Step 2, e.g., in
the second matrix we have
w01;5 ¼min w1;5;w1;2 þw2;5
� �

¼minf1;5þ 10g ¼ 15:
Elements in row 1 of the last matrix are the distances of the shortest paths from node 1 to others (1 to 8): 0, 5, 8, 10, 13, 8,
17, and 19.

We can see from Fig. 4 that the operation of weight matrix using the NC algorithm to solve the SSSP problem is very sim-
ple; the elements to be modified are always in the row in which the source node stands (i.e., the sth row).

5. Conclusion

The NC algorithm finds the shortest path by node combination instead of by labeling operations. The difference between
the NC algorithm and Dijkstra’s algorithm is, first, the set of visited (solved) nodes whose distances have been established. In
the NC algorithm, nodes are combined into the new source node, which means that we need not maintain this set. Second,
the relaxation is done on the edge weight directly, which means that no additional memory or CPU-cycles are needed to re-
cord the temporary distances. Third, the NC algorithm is carried out by repeatedly finding the source node’s nearest neigh-
bor, which makes the process of finding shortest paths more comprehensible and vivid. Experimental evaluations reveal that
with less memory cost, the NC algorithm finds the shortest paths in the same amount of time as Dijkstra’s algorithm.

Implementation of the NC algorithm on weight matrices is also more convenient: both the minimum element to be found
and the elements to be modified are in the same row. If the combination of nodes is implemented by setting edge weights to
infinity, the NC algorithm can be conducted by vectors, which is suitable on mathematics platforms such as Matlab and other
programming languages where the concept of infinity is implemented.

In conclusion, we have demonstrated an alternative way to understand Dijkstra’s algorithm. Node combination makes the
process of finding the shortest paths much more straightforward, comprehensible, and memory-sparing.

Acknowledgements

The authors thank B.J. Kim, F. Liljeros and S. Zhang for valuable discussions, and X. Lu acknowledges the support from the
Innovation Foundation of National University of Defense Technology (Grant No. S070501).

References

[1] G. Gallo, S. Pallottino, Shortest path algorithms, Annals of Operations Research 13 (1) (1988) 1–79.
[2] D.B. West, Introduction to Graph Theory, second ed., Prentice Hall, 2001.
[3] D.Z. Du, P.M. Pardalos (Eds.), Network Optimization Problems: Algorithms, Applications and Complexity, World Scientific, Series on Applied

Mathematics, vol. 2, 1993.
[4] P.M. Pardalos, M.G.C. Resende (Eds.), Handbook of Applied Optimization, Oxford University Press, 2002.
[5] E.W. Dijkstra, A note on two problems in connection with graphs, Numerische Mathematik 1 (1959) 269–271.
[6] R.E. Bellman, On a routing problem, Quarterly of Applied Mathematics 16 (1958) 87–90.
[7] L.R. Ford, D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, 1962.
[8] E.F. Moore, The shortest path through a maze, in: Proceedings of the International Symposium on the Theory of Switching, Harvard University Press,

1959, pp. 285–292.
[9] R.W. Floyd, Algorithm 97: shortest path, Communications of the ACM 5 (6) (1962) 345.

[10] P. Festa, Shortest path tree algorithms, in: Encyclopedia of Optimization, second ed., Springer, 2009, pp. 3507–3519.
[11] S. Warshall, A theorem on boolean matrices, Journal of the ACM 9 (1) (1962) 11–12.
[12] G.B. Dantzig, All shortest routes in a graph, in: Theory of Graphs, International Symposium, Gordon and Breach, New York, 1967, pp. 91–92.
[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, third ed., MIT Press, 2009.
[14] R.K. Ahuja, T.L. Magnanti, J. Orlin, Network Flows: Theory, Algorithms, and Applications, Springer, 1993.
[15] M.L. Fredman, R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of the ACM 34 (3) (1987) 596–615.
[16] B.V. Cherkassky, A.V. Goldberg, T. Radzik, Shortest paths algorithms: theory and experimental evaluation, Mathematical Programming 73 (2) (1996)

129–174.

6408 X. Lu, M. Camitz / Applied Mathematics and Computation 217 (2011) 6401–6408
[17] F.B. Zhan, Three fastest shortest path algorithms on real road networks: data structures and procedures, Journal of Geographic Information and
Decision Analysis 1 (1) (2001) 69–82.

[18] R.H. Möhring, H. Schilling, B. Schütz, D. Wagner, T. Willhalm, Partitioning graphs to speed up Dijkstra’s algorithm, in: Proceedings 4th International
Workshop on Experimental and Efficient Algorithms (WEA), 2005, pp. 189–202.

[19] A.K. Ziliaskopoulos, F.D. Mandanas, H.S. Mahmassani, An extension of labeling techniques for finding shortest path trees, European Journal of
Operational Research 198 (1) (2009) 63–72.

[20] M.H. Xu, Y.Q. Liu, Q.L. Huang, Y.X. Zhang, G.F. Luan, An improved Dijkstra’s shortest path algorithm for sparse network, Applied Mathematics and
Computation 185 (1) (2007) 247–254.

[21] R.E. Tarjan, Data structures and network algorithms, SIAM, Philadelphia, PA, 1983.
[22] P. Erdös, A. Rényi, On random graphs. I, Publicationes Mathematicae Debrecen 6 (1959) 290–297.
[23] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (6684) (1998) 440–442.
[24] A.L. Barabasi, R. Albert, H. Jeong, Mean-field theory for scale-free random networks, Physica A 272 (1–2) (1999) 173–187.
[25] R. Albert, H. Jeong, A.L. Barabasi, The diameter of the world wide web, Nature 401 (1999) 130–131.
[26] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Complex networks: structure and dynamics, Physics Reports-Review Section of Physics Letters

424 (4–5) (2006) 175–308.
[27] M.E.J. Newman, The structure and function of complex networks, SIAM Review 45 (2) (2003) 167–256.

	Finding the shortest paths by node combination
	Introduction
	Node combination
	Node combination algorithm
	Fundamental idea
	Algorithm and proofs
	An example

	Complexity and experimental evaluation
	Further discussion
	Implementation of finding the shortest paths
	Weight matrix implementation of NC algorithm

	Conclusion
	Acknowledgements
	References

