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Abstract: This paper proposes a method on predicting the remaining useful life (RUL) of a concrete
piston of a concrete pump truck based on probability statistics and data-driven approaches. Firstly,
the average useful life of the concrete piston is determined by probability distribution fitting using
actual life data. Secondly, according to condition monitoring data of the concrete pump truck, a
concept of life coefficient of the concrete piston is proposed to represent the influence of the loading
condition on the actual useful life of individual concrete pistons, and different regression models
are established to predict the RUL of the concrete pistons. Finally, according to the prediction result
of the concrete piston at different life stages, a replacement warning point is established to provide
support for the inventory management and replacement plan of the concrete piston.

Keywords: Weibull distribution; condition monitoring data; remaining useful life; life coefficient;
replacement warning point

1. Preface

Along with the continuous progress of modern manufacturing technology, the struc-
ture of mechanical and electrical systems is more and more complex, which brings new
challenges to fault prediction and health management of the system. Parts are important
components of mechanical and electrical product systems, once the parts fail, it may affect
the healthy operation of the whole system, or even cause serious loss of life and property.
Therefore, the remaining useful life (RUL) prediction of parts has become a key research
issue of fault prediction and health management [1–3]. Lei Y et al. [4] provided a review
on machinery prognostics following its whole program, i.e., from data acquisition to RUL
prediction. Jay Lee et al. [5] provided a review on the system design of prognostics and
health management, and gave a tutorial for the selection of RUL prediction approaches by
comparing their advantages and disadvantages.

At present, a number of research on the RUL prediction of parts have reported [6–8],
and approaches of RUL prediction can be roughly grouped into three categories. The first
category is the prediction method based on physical models, which estimates the RUL of
parts according to the degradation mechanism. Leser et al. [9] validated the crack growth
modeling method using damage diagnosis data based on structural health monitoring,
and a probabilistic prediction of RUL is formed for a metallic, single-edge notch tension
specimen with a fatigue crack growing under mixed-mode conditions. Habib et al. [10]
evaluated the stress of A310 aircraft wings during each loading cycle through a finite
element analysis, and they predicted the RUL of A310 wings using the Paris Law technique
based on linear elastic fracture mechanics. Chen et al. [11] developed a novel computational
modelling technique for the prediction of crack growth in load bearing orthopaedic alloys
subjected to fatigue loading, which can predict the RUL of parts through the crack path.
The second category is the prediction method based on probability statistics, which fit
the failure data of parts to obtain the characteristic distribution of life through a statistical
distribution model. Wang et al. [12] proposed a novel method based on the three-parameter
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Weibull distribution proportional hazards model to predict the RUL of rolling bearings,
the model is able to produce accurate RUL predictions for the tested bearings and outper-
forms the popular two-parameter model. Pan et al. [13] proposed a remanufacturability
evaluation scheme based on the average RUL of the structural arm, and made a com-
prehensive evaluation by establishing the reliability parameter model of the structural
arm. Xu et al. [14] discussed the influence of different distribution function values on the
prediction results by analyzing different parameter estimation methods, and established
the RUL prediction model based on the failure data of parts. Rong et al. [15] determined the
average useful life of the pump truck boom based on the Weibull distribution function by
using the failure data, and predicted the RUL of the boom by using the used time. The third
category is the data-driven prediction method. Ren et al. [16] analyzed the time-domain
and frequency-domain characteristics of rolling bearing vibration signals, and established
the RUL prediction model of rolling bearing based on deep neural networks. Liu et al. [17]
proposed an RUL prediction framework based on multiple health state assessments that
divide the entire bearing life into several health states, where a local regression model can
be built individually. Zio et al. [18] proposed a methodology for the estimation of the RUL
of parts based on particle filtering. Sun et al. [19] used support vector machines to build
degradation models for bearing RUL prediction. Maio et al. [20] proposed a combination of
a relevance vector machine and model fitting as a prognostic procedure for estimating the
RUL of degraded thrust ball bearings. Deutsch et al. [21] proposed a deep learning-based
approach for the RUL prediction of rotating parts with big data.

With more and more information available to mechanical devices, many new methods
have been applied to prediction models. Mad et al. [22] used a physical model to generate
health indices whose evolution can be estimated and predicted online. Xu J et al. [23]
combined the monitoring sensor data and integrated the strengths of the data-driven
prognostics approach and the experience-based approach, while reducing their respec-
tive limitations.

The RUL prediction, based on physical model needs to establish accurate models
to describe failure degradation mechanism of parts, while the RUL prediction, based on
probability statistics, does not consider the actual working state of different parts, so the
application of both methods is limited. With the support of modern information technology
and the industrial Internet of Things technology, mechanical and electrical product systems
are becoming more and more intelligent, so more and more data on the working status can
be obtained, which brings great potential for data driven RUL prediction research [24].

A concrete pump truck is a kind of construction vehicle which uses hydraulic pressure
to deliver concrete continuously through the pipeline. A concrete piston, which is located
in the conveying cylinder of the pump truck, as shown in Figure 1, is an important part
of the concrete pump truck. When the concrete piston is working, it reciprocates in the
concrete medium of the conveying cylinder, provides pressure for the concrete, pumps
the concrete to a remote place, and plays a sealing role at the same time. The working
environment of the concrete piston is very harsh, and it is difficult to establish an accurate
failure degradation model and obtain the operating state data directly. At present, there
is limited research on the RUL prediction of the concrete piston. By using the condition
monitoring data of the concrete pump truck and the replacement information data of
the concrete piston, this paper puts forward an RUL prediction method of the concrete
piston based on probability statistics and condition monitoring data, and the validity of the
method is verified through the result analysis and model application.
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Figure 1. Concrete pump truck and concrete piston.

Figure 2 shows the flowchart of the proposed methodology for RUL prediction. The
methodology is divided into two phases: offline and online. In the offline phase, the
replacement information data form different concrete pistons are used to fit features based
on the Weibull distribution, the condition monitoring data from different concrete pump
trucks are used to fit features based on regression algorithm, and the RUL prediction model
is built. In the online phase, the RUL of the concrete piston is estimated based on the
condition monitoring data from a new concrete pump truck and the real-time working life.
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Figure 2. Flowchart of the RUL prediction.

The rest of the paper is organized as follows: Section 2 introduces the basic situation of
the data. In Section 3, we establish the RUL prediction model of the concrete piston based
on probability statistics and data-driven approaches. Section 4 discusses the prediction
effect of different regression models, and we use the best prediction model to propose
setting the replacement warning point of the concrete piston in Section 5, and conclusions
are finally provided.
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2. Data Overview
2.1. Data Source

The data studied in this paper were collected from 129 concrete pump trucks of a
construction machinery enterprise from January to December 2019, including two types
of data: condition monitoring data of the concrete pump truck and replacement infor-
mation data of the concrete piston. The condition monitoring data of the concrete pump
truck includes time, GPS latitude, GPS longitude, engine speed, hydraulic oil temperature,
system pressure, pumping capacity, cumulative fuel consumption, reversing frequency,
cumulative working time, and pump truck status, etc., which are uploaded to the enter-
prise’s networked operation and maintenance platform through the Internet of Things. The
replacement information data, which refers to the actual working life of the concrete piston
when it is replaced because of failure, is directly inputted into the networked operation
and maintenance platform by the service engineer of the enterprise.

2.2. Data Description

According to the functional characteristics of the concrete piston, this paper studies
five condition monitoring data related to the working state of the concrete pump truck,
including engine speed, system pressure, pumping capacity, reversing frequency, and
cumulative working time. The specific meaning of the condition monitoring data is shown
in Table 1.

Table 1. Meanings of condition monitoring data of the concrete pump truck.

Name Data Type Unit Scope Meaning

Engine Speed integral RPM 0~2000 The speed of pump
truck engine

System Pressure integral MPa 0~32 pump hydraulic pressure of
pumping system

Pumping Capacity integral % 0~100 The percentage of pump
truck in its maximum value

Reversing Frequency integral times/minute 0~30 Pump cylinder reversing
times per minute

Cumulative
Working Time floating hour ≥0 Cumulative working time

of pump truck

The condition monitoring data of the concrete pump truck includes “equipment
number”, “parameter name”, “parameter value” and “server receiving time”, totaling
more than 2.8 million pieces. The replacement information data of the concrete piston
includes “equipment number”, “replacement timing” and “replacement date”, totaling
325 pieces.

2.3. Data Preprocessing

The condition monitoring data of the concrete pump truck studied in this paper are
time series data collected by sensors. Due to factors such as the timing error of sensors or
poor communication conditions, certain data are missed in the data set. For the four types
of data, such as engine speed, system pressure, pumping capacity, and reversing frequency,
the missing data may be very close to the data uploaded the previous time due to the
high data collecting frequency, so the nearest complement method is adopted to fill in
missed data. The cumulative working time is accumulated data; it can be assumed that the
changing of the cumulative working time is slow and uniform, so the linear interpolation
method is adopted to fill the missed data [25]. The original data of the engine speed in a
certain period of time is shown in Figure 3, and the processed data is shown in Figure 4.
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3. Model Building
3.1. Model Construction

If actual working life data of the concrete piston is known, the appropriate probability
statistical distribution model can be selected to fit the data, and the characteristic distri-
bution of the life can be obtained, which can be used to estimate the average useful life.
During the operation of the concrete piston, the working state of the concrete pump truck
will have an impact on its actual working life, so a concept of life coefficient is proposed
based on the condition monitoring data of the concrete pump truck, and the RUL prediction
model of the concrete piston is established, as shown in Equation (1).

Mr = α·Mt −M0 (1)

where Mr is the RUL of the concrete piston, α is the life coefficient of the concrete piston
related to condition monitoring data of the concrete pump truck, Mt is the average useful
life of the concrete piston, and M0 is the real-time working life of the concrete piston.

3.2. The Average Useful Life of the Concrete Piston

In the failure probability distribution function of parts, there are several kinds of
common distribution functions: exponential distribution, normal distribution, lognormal
distribution, Weibull distribution, etc. Among them, the Weibull distribution is the most
widely used due to its high degree of fitting and good effect for parts which undergo
notable degradation before final failure [25]. The main failure mode of the concrete piston
is dissipation failure, so this paper uses the Weibull distribution to study the average useful
life of the concrete piston.

The probability density function of the two-parameter Weibull distribution is:

f (x) =
k
λ

( x
λ

)k−1
exp

[
−
( x

λ

)k
]

, 0 ≤ x ≤ ∞, λ > 0, k > 0 (2)
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where λ is the scale parameter, called the characteristic life, which is an average value of
the life of the parts; k is the shape parameter, which is the failure form of the parts.

The failure distribution function of the Weibull distribution is:

F(x) = 1− exp
[

1−
( x

λ

)k
]

(3)

The average useful life Mt of the concrete piston is represented by the expected value
of the failure distribution function:

Mt = λΓ
(

1 +
1
k

)
(4)

where Γ is the gamma function.
According to the replacement information data of the concrete piston, we can obtain

the actual working life data, arrange it in increasing order, calculate it by the common
median rank, and estimate the parameters of the Weibull distribution based on the least
square method. The fitting results are shown in Figure 5, and the fitting error is not higher
than 0.056.

Figure 5. Least squares fitting diagram.

Substitute λ = 243.7813 and k = 10.8906 into Formula (4), the expected value of the
Weibull distribution failure distribution function is obtained, and the average useful life of
the concrete piston Mt = 239.6256 h.

3.3. The Life Coefficient of the Concrete Piston

As the concrete piston is a mechanical part dominated by wear failure, it is expected
to wear faster under a higher-strength working environment, so the working time of the
concrete pump truck under a high-load working state has a greater impact on its life.
Referring to the working environment and material properties of the concrete piston,
the high-load working state is determined by parameters, such as engine speed, system
pressure, pumping capacity, and reversing frequency. According to the actual performance
parameters of the concrete pump truck, the definition of the high-load working state is
shown in Table 2.
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Table 2. Definition table of high-load working state of the concrete pump truck.

Name Unit Normal Range High-Load Working State

Engine Speed RPM 0~2000 ≥1100
System Pressure MPa 0~32 ≥20

Pumping Capacity % 0~100 ≥40
Reversing Frequency Times/minute 0~30 ≥10

According to the definition of the high-load working state of the concrete pump truck,
condition monitoring data of the concrete pump truck corresponding to the actual working
life data of the concrete piston is statistically analyzed. The ratio of the high-load working
state of the concrete piston in the life cycle of engine speed, system pressure, pumping
capacity, and reversing frequency for 325 pieces is calculated respectively, which is recorded
as A, B, C, D, as shown in Table 3. The life coefficient α is calculated by the average useful
life Mt and the real-time working life M0 according to Formula (1), and the results are
shown in Table 3.

Table 3. Dataset of the concrete piston life prediction.

Number A B C D M0 α

1 0.5327 0.4649 0.2237 0.2131 275.7432 1.1507
2 0.4834 0.5586 0.2634 0.2056 258.7615 1.0779
3 0.4930 0.6394 0.2414 0.2527 232.4608 0.9701
4 0.4986 0.5002 0.1362 0.3006 257.3100 1.0738
5 0.6929 0.7160 0.3275 0.2343 269.2673 1.1237
6 0.5578 0.4718 0.3005 0.2156 236.1271 0.9854
7 0.4119 0.5886 0.2571 0.2779 263.5402 1.0998
8 0.4184 0.5829 0.2636 0.3029 259.3468 1.0823
9 0.4356 0.3802 0.2173 0.2318 264.6904 1.1046

10 0.7991 0.7307 0.3154 0.2297 229.6332 0.9583
11 0.6120 0.4617 0.1180 0.1447 256.2317 1.0693
12 0.6313 0.5106 0.3080 0.2707 254.0271 1.0601
13 0.4727 0.5465 0.1920 0.1924 264.5467 1.1040
14 0.3900 0.4855 0.2124 0.2814 261.2638 1.0903
15 0.5690 0.4688 0.3515 0.1846 258.9155 1.0805
16 0.3960 0.4253 0.1909 0.2327 265.2655 1.1070
17 0.6260 0.5851 0.1903 0.2584 220.7671 0.9213
18 0.4700 0.5367 0.1802 0.2610 264.2112 1.1026
19 0.5186 0.4900 0.3221 0.2101 240.6081 1.0041
20 0.3908 0.4339 0.1765 0.2387 256.1118 1.0688
21 0.4351 0.4570 0.1445 0.1752 253.8594 1.0594
22 0.3740 0.7600 0.4246 0.3216 214.8962 0.8968
23 0.5351 0.6035 0.3396 0.2556 233.5870 0.9748
24 0.4302 0.5646 0.2063 0.2923 236.6303 0.9875
25 0.5283 0.4452 0.2472 0.2426 244.3702 1.0198
26 0.6663 0.6448 0.2218 0.2453 228.8664 0.9551
27 0.5727 0.7697 0.3411 0.2537 219.0657 0.9142
28 0.6345 0.5055 0.2151 0.2957 232.2691 0.9693
29 0.5842 0.4344 0.2726 0.2262 253.6437 1.0585
30 0.6911 0.4715 0.2746 0.2917 244.1066 1.0187
31 0.5448 0.6426 0.2909 0.3201 233.3714 0.9739
32 0.3929 0.5887 0.2085 0.2582 238.4754 0.9952
33 0.5501 0.6243 0.1731 0.1468 247.1259 1.0313
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Table 3. Cont.

Number A B C D M0 α

34 0.5889 0.6195 0.2080 0.2483 252.7092 1.0546
35 0.7093 0.3554 0.3357 0.2742 247.8687 1.0344
36 0.3942 0.5236 0.2500 0.2306 253.4520 1.0577
37 0.7755 0.6721 0.3851 0.3027 237.2293 0.9900
38 0.4760 0.5225 0.1709 0.1920 252.3737 1.0532
39 0.5700 0.5270 0.3312 0.3010 239.8652 1.0010
40 0.7545 0.7045 0.3351 0.2761 228.3153 0.9528
41 0.5298 0.6320 0.3479 0.2816 224.8167 0.9382
42 0.5825 0.5987 0.2093 0.1327 227.9079 0.9511
43 0.5853 0.4876 0.1834 0.2694 217.8916 0.9093
44 0.5451 0.4701 0.3063 0.2326 252.9009 1.0554
45 0.4657 0.5438 0.2912 0.3321 245.7600 1.0256
46 0.5847 0.4798 0.3163 0.2012 235.1206 0.9812
47 0.7705 0.5957 0.2533 0.2740 230.4479 0.9617
48 0.6602 0.6436 0.3349 0.2553 232.0774 0.9685
49 0.5163 0.4518 0.2932 0.2523 280.4338 1.1703
50 0.4919 0.4107 0.1371 0.1977 248.3719 1.0365
51 0.5353 0.7071 0.3681 0.3211 213.4345 0.8907
52 0.6934 0.6488 0.3370 0.2824 233.9944 0.9765
53 0.6387 0.6471 0.3739 0.2274 241.2790 1.0069
54 0.4278 0.4885 0.1921 0.2458 246.6946 1.0295
55 0.6932 0.4207 0.2761 0.2872 242.2136 1.0108
56 0.5113 0.5023 0.1883 0.2215 253.3322 1.0572
57 0.5476 0.3089 0.1933 0.2920 252.1820 1.0524
58 0.6081 0.5186 0.3280 0.3104 231.7419 0.9671
59 0.3961 0.5079 0.2603 0.2196 260.6168 1.0876
60 0.3500 0.4500 0.1602 0.1790 263.3725 1.0991
61 0.5502 0.4101 0.3263 0.3634 249.2585 1.0402
62 0.5534 0.7115 0.2740 0.3103 230.5678 0.9622
63 0.4785 0.5300 0.2183 0.1731 260.3293 1.0864
64 0.5698 0.6483 0.2974 0.2842 235.8635 0.9843
65 0.3904 0.6349 0.3511 0.2974 233.3953 0.9740
66 0.7074 0.6328 0.2938 0.2446 231.8617 0.9676
67 0.5023 0.5521 0.3031 0.2701 238.1160 0.9937
68 0.6151 0.5705 0.2962 0.2476 234.2580 0.9776
69 0.6402 0.6849 0.3190 0.3735 235.0248 0.9808
70 0.5425 0.4229 0.3202 0.2349 259.1311 1.0814
71 0.3712 0.2922 0.2286 0.2336 247.1498 1.0314
72 0.6459 0.6576 0.2489 0.3010 231.8378 0.9675
73 0.4173 0.5811 0.4002 0.2432 241.3988 1.0074
74 0.5381 0.4812 0.2163 0.2784 246.9581 1.0306
75 0.5551 0.5284 0.3487 0.2546 242.4053 1.0116
76 0.5160 0.5578 0.3080 0.2523 242.2375 1.0109
77 0.5938 0.6039 0.3585 0.3144 234.3299 0.9779
78 0.6394 0.7066 0.3317 0.3065 225.4877 0.9410
79 0.3929 0.5261 0.2584 0.1987 249.4263 1.0409
80 0.3853 0.4664 0.1966 0.1815 254.3386 1.0614
81 0.5490 0.4925 0.1901 0.2395 255.7284 1.0672
82 0.4072 0.5081 0.1832 0.2050 268.5244 1.1206
83 0.4886 0.3629 0.2008 0.1686 271.1124 1.1314
84 0.7053 0.5604 0.3034 0.3427 216.3580 0.9029
85 0.4791 0.3072 0.2206 0.1546 253.4280 1.0576
86 0.5439 0.4260 0.1583 0.2440 250.6963 1.0462
87 0.4787 0.4619 0.2312 0.2319 270.0101 1.1268
88 0.5503 0.6096 0.2473 0.2190 250.5765 1.0457
89 0.6039 0.4221 0.2556 0.3442 234.9289 0.9804
90 0.5919 0.7085 0.2408 0.3349 214.0815 0.8934
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Number A B C D M0 α

91 0.4955 0.3821 0.3156 0.2506 248.3240 1.0363
92 0.5745 0.4788 0.2822 0.3193 231.8617 0.9676
93 0.6116 0.6443 0.2551 0.3027 234.6654 0.9793
94 0.6295 0.4652 0.3162 0.4058 225.7513 0.9421
95 0.5539 0.5181 0.2986 0.2226 247.7010 1.0337
96 0.6030 0.5657 0.3448 0.2144 237.2773 0.9902
97 0.4644 0.3807 0.1791 0.1555 272.2147 1.1360
98 0.6541 0.5545 0.4018 0.2551 240.7039 1.0045
99 0.4365 0.5885 0.3102 0.3304 242.4771 1.0119
100 0.6328 0.6943 0.3283 0.2597 234.9529 0.9805
101 0.5775 0.6414 0.2589 0.2481 225.5356 0.9412
102 0.4527 0.5211 0.2768 0.2113 240.4164 1.0033
103 0.5238 0.7210 0.3026 0.2791 228.6987 0.9544
104 0.6701 0.8097 0.2931 0.2319 211.7092 0.8835
105 0.5494 0.5042 0.1770 0.3102 243.0283 1.0142
106 0.5987 0.6512 0.3512 0.3089 225.9669 0.9430
107 0.5480 0.6019 0.3675 0.3097 236.6782 0.9877
108 0.6178 0.5802 0.3709 0.2382 232.1014 0.9686
109 0.5233 0.4629 0.2508 0.2647 264.5227 1.1039
110 0.5416 0.6134 0.2541 0.3603 229.9927 0.9598
111 0.6049 0.7044 0.2866 0.2677 233.7787 0.9756
112 0.7767 0.7459 0.3312 0.2980 224.0499 0.9350
113 0.7424 0.7940 0.2892 0.3641 229.4655 0.9576
114 0.4251 0.3137 0.1863 0.2582 255.2013 1.0650
115 0.4677 0.4836 0.2420 0.1943 247.6051 1.0333
116 0.4719 0.5506 0.1208 0.2607 249.9535 1.0431
117 0.7987 0.5091 0.2065 0.2828 244.6338 1.0209
118 0.6100 0.5015 0.3600 0.3276 241.5426 1.0080
119 0.6669 0.6183 0.2327 0.2860 238.7390 0.9963
120 0.5130 0.5522 0.1823 0.1880 256.2796 1.0695
121 0.5116 0.4400 0.2182 0.2465 265.7688 1.1091
122 0.5734 0.4599 0.2170 0.2026 239.1463 0.9980
123 0.5844 0.4862 0.2918 0.2739 213.8898 0.8926
124 0.6483 0.5492 0.3449 0.3031 233.2516 0.9734
125 0.3913 0.3401 0.1683 0.1353 262.7974 1.0967
126 0.5527 0.6217 0.2720 0.2031 229.3457 0.9571
127 0.5998 0.5637 0.2898 0.2458 236.9178 0.9887
128 0.5878 0.4996 0.3996 0.3000 272.6939 1.1380
129 0.5611 0.5380 0.2617 0.2755 241.4468 1.0076
130 0.4203 0.4602 0.2533 0.2163 288.0779 1.2022
131 0.5129 0.5617 0.3285 0.2422 235.8395 0.9842
132 0.4408 0.3256 0.1743 0.1156 263.5642 1.0999
133 0.6086 0.5302 0.3208 0.2517 241.1832 1.0065
134 0.4683 0.5353 0.2151 0.2366 254.7699 1.0632
135 0.5089 0.4360 0.1880 0.1649 263.9716 1.1016
136 0.6593 0.5301 0.3008 0.3063 229.8728 0.9593
137 0.6241 0.5892 0.3405 0.2801 234.7852 0.9798
138 0.4846 0.5178 0.3320 0.2457 263.4923 1.0996
139 0.4799 0.3837 0.2091 0.1693 270.0101 1.1268
140 0.7492 0.7146 0.3966 0.2981 203.3463 0.8486
141 0.5553 0.6123 0.2166 0.2633 227.1411 0.9479
142 0.6203 0.5740 0.3016 0.3028 224.2656 0.9359
143 0.6210 0.5310 0.2124 0.2406 253.7156 1.0588
144 0.5969 0.7138 0.4393 0.2870 229.7770 0.9589
145 0.6701 0.6351 0.2107 0.2495 245.9038 1.0262
146 0.5613 0.5360 0.2391 0.2374 244.9213 1.0221
147 0.5399 0.5594 0.2524 0.2649 258.5800 1.0791
148 0.6639 0.6073 0.2783 0.3198 223.2592 0.9317
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149 0.5502 0.4978 0.2028 0.2773 235.4082 0.9824
150 0.6114 0.5488 0.3251 0.3126 222.3726 0.9280
151 0.5003 0.3057 0.1333 0.1959 250.6723 1.0461
152 0.5456 0.6012 0.3290 0.3119 233.7787 0.9756
153 0.5188 0.5440 0.3072 0.3005 240.8237 1.0050
154 0.3839 0.4064 0.1277 0.1674 274.0838 1.1438
155 0.5102 0.3532 0.1406 0.2123 261.3596 1.0907
156 0.6292 0.5956 0.2766 0.2094 205.7665 0.8587
157 0.5574 0.4750 0.2662 0.2037 254.0511 1.0602
158 0.5551 0.5952 0.2645 0.2576 234.3299 0.9779
159 0.5844 0.4964 0.2991 0.2398 269.4111 1.1243
160 0.5046 0.5260 0.2890 0.3293 268.7401 1.1215
161 0.5478 0.6837 0.3121 0.3214 218.9699 0.9138
162 0.6041 0.6057 0.2931 0.2927 227.0453 0.9475
163 0.5403 0.6416 0.3216 0.3729 239.9611 1.0014
164 0.7262 0.6158 0.3376 0.2182 225.9190 0.9428
165 0.5465 0.5881 0.2003 0.1856 263.9236 1.1014
166 0.5625 0.5929 0.3478 0.2767 226.0388 0.9433
167 0.4225 0.4387 0.2002 0.1501 261.0242 1.0893
168 0.6945 0.6719 0.3022 0.2703 205.6467 0.8582
169 0.5187 0.4585 0.2539 0.1418 260.0177 1.0851
170 0.4601 0.7740 0.3655 0.2495 251.0797 1.0478
171 0.6036 0.5835 0.3731 0.2935 231.8378 0.9675
172 0.5160 0.5574 0.2100 0.2328 265.6489 1.1086
173 0.5578 0.4984 0.2692 0.2352 230.6876 0.9627
174 0.4149 0.5973 0.3432 0.3339 225.8232 0.9424
175 0.5196 0.5593 0.2851 0.2697 260.8804 1.0887
176 0.5180 0.6140 0.3687 0.2659 241.6145 1.0083
177 0.5161 0.5074 0.2803 0.2277 262.1025 1.0938
178 0.4803 0.5122 0.2569 0.1834 288.5811 1.2043
179 0.5608 0.4847 0.2943 0.2037 234.4497 0.9784
180 0.3483 0.5307 0.2151 0.1520 276.1206 1.1523
181 0.4830 0.5920 0.2248 0.3274 237.4450 0.9909
182 0.5922 0.4822 0.2869 0.1430 306.8645 1.2806
183 0.6702 0.6951 0.3228 0.3498 233.3953 0.9740
184 0.6646 0.5053 0.2649 0.2604 215.0879 0.8976
185 0.6676 0.5642 0.3133 0.3632 225.6794 0.9418
186 0.6223 0.6392 0.2231 0.2530 214.0336 0.8932
187 0.6169 0.5294 0.2479 0.2073 263.9716 1.1016
188 0.6417 0.5766 0.3144 0.2674 209.7922 0.8755
189 0.4991 0.4622 0.3406 0.2389 255.1054 1.0646
190 0.5732 0.4733 0.2561 0.2080 248.7553 1.0381
191 0.4642 0.4482 0.1526 0.2511 278.2772 1.1613
192 0.4705 0.4710 0.2948 0.2380 248.4438 1.0368
193 0.3980 0.4314 0.2487 0.1844 270.2498 1.1278
194 0.5619 0.5153 0.3043 0.2721 241.0873 1.0061
195 0.5183 0.3431 0.1905 0.1427 255.5607 1.0665
196 0.5378 0.6151 0.2805 0.3287 229.1779 0.9564
197 0.6363 0.4785 0.2373 0.2320 254.3386 1.0614
198 0.6498 0.6442 0.2928 0.3814 213.7700 0.8921
199 0.4216 0.4310 0.1341 0.2889 265.1457 1.1065
200 0.7010 0.5817 0.2524 0.3164 209.6484 0.8749
201 0.5362 0.6251 0.2883 0.2724 218.4187 0.9115
202 0.4864 0.5794 0.2506 0.2725 235.5759 0.9831
203 0.6562 0.6062 0.2083 0.3454 255.9441 1.0681
204 0.3499 0.3902 0.1461 0.1384 268.9558 1.1224
205 0.6700 0.4900 0.2824 0.2015 229.6332 0.9583
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206 0.5129 0.7297 0.3784 0.2789 214.5368 0.8953
207 0.5427 0.6054 0.2937 0.2557 228.7945 0.9548
208 0.4656 0.3771 0.2523 0.2204 258.2205 1.0776
209 0.5628 0.7643 0.3090 0.2544 229.8010 0.9590
210 0.3204 0.4247 0.2268 0.2008 248.8751 1.0386
211 0.4798 0.5539 0.1698 0.2075 265.8646 1.1095
212 0.5834 0.5282 0.3478 0.2868 236.7741 0.9881
213 0.5985 0.7345 0.3383 0.2557 234.4257 0.9783
214 0.5664 0.7624 0.3659 0.2459 231.1429 0.9646
215 0.5488 0.6883 0.2842 0.3029 211.3498 0.8820
216 0.6220 0.5906 0.3377 0.3362 228.0038 0.9515
217 0.4678 0.5518 0.2876 0.2269 258.2205 1.0776
218 0.5724 0.5558 0.3123 0.2871 240.9915 1.0057
219 0.5817 0.4938 0.3971 0.2734 231.0710 0.9643
220 0.6025 0.6517 0.3293 0.2192 236.6542 0.9876
221 0.4685 0.5601 0.2171 0.1900 262.4140 1.0951
222 0.6209 0.7014 0.2363 0.3432 229.6811 0.9585
223 0.4468 0.5704 0.3535 0.3161 249.2346 1.0401
224 0.6542 0.5667 0.3371 0.2738 232.3170 0.9695
225 0.6131 0.5116 0.3298 0.2219 231.8138 0.9674
226 0.5320 0.6009 0.2380 0.2300 252.3018 1.0529
227 0.4922 0.5774 0.3688 0.2073 244.8974 1.0220
228 0.3778 0.5247 0.1892 0.2118 252.3018 1.0529
229 0.5296 0.6142 0.3521 0.3223 241.1592 1.0064
230 0.6014 0.5301 0.3349 0.3462 230.7115 0.9628
231 0.4699 0.5192 0.2661 0.2243 240.2486 1.0026
232 0.3846 0.3595 0.1690 0.2545 265.1937 1.1067
233 0.4096 0.4316 0.2321 0.2468 252.5654 1.0540
234 0.5039 0.5834 0.2477 0.2505 241.9739 1.0098
235 0.6418 0.7229 0.2885 0.2730 251.0078 1.0475
236 0.6329 0.7621 0.4740 0.3463 229.0341 0.9558
237 0.4722 0.3236 0.1669 0.2484 259.2509 1.0819
238 0.4912 0.4438 0.2486 0.3104 245.9757 1.0265
239 0.5113 0.4463 0.1880 0.1897 249.0668 1.0394
240 0.5153 0.6013 0.3866 0.3206 234.4018 0.9782
241 0.6428 0.5521 0.3476 0.2764 223.1154 0.9311
242 0.6321 0.6634 0.2359 0.2585 238.5233 0.9954
243 0.5844 0.5470 0.2935 0.2552 240.1528 1.0022
244 0.3498 0.4925 0.2679 0.2633 230.5917 0.9623
245 0.3916 0.3891 0.1782 0.1629 243.2679 1.0152
246 0.5404 0.6057 0.3468 0.2711 232.0774 0.9685
247 0.4428 0.5545 0.1890 0.1716 257.5975 1.0750
248 0.3722 0.4015 0.2488 0.1196 257.9809 1.0766
249 0.4399 0.5011 0.1861 0.2124 260.2574 1.0861
250 0.5272 0.6077 0.2032 0.2845 239.7694 1.0006
251 0.6786 0.3383 0.2162 0.2228 235.3603 0.9822
252 0.4391 0.4175 0.2117 0.2774 251.8465 1.0510
253 0.3988 0.4560 0.1872 0.2227 246.8144 1.0300
254 0.6330 0.5616 0.3023 0.2692 226.6619 0.9459
255 0.6651 0.5741 0.2634 0.2190 225.6554 0.9417
256 0.4153 0.5895 0.2481 0.2455 230.8553 0.9634
257 0.4940 0.6101 0.2805 0.3141 212.0447 0.8849
258 0.5217 0.4009 0.1944 0.1861 282.0633 1.1771
259 0.6303 0.5292 0.2873 0.2560 252.7810 1.0549
260 0.5108 0.6170 0.2965 0.2150 252.1580 1.0523
261 0.5183 0.4238 0.2415 0.2348 263.6600 1.1003
262 0.5485 0.3874 0.1971 0.2004 264.0914 1.1021
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263 0.6570 0.5258 0.2570 0.3183 232.1732 0.9689
264 0.4916 0.6562 0.3351 0.2652 232.7483 0.9713
265 0.5513 0.5241 0.2943 0.2734 242.9324 1.0138
266 0.5428 0.6279 0.2854 0.2430 220.5035 0.9202
267 0.6963 0.5806 0.2732 0.3194 232.9880 0.9723
268 0.3664 0.4032 0.1306 0.1917 264.5946 1.1042
269 0.6383 0.5060 0.3105 0.2282 277.2229 1.1569
270 0.5920 0.4225 0.2685 0.1743 268.5005 1.1205
271 0.5524 0.6838 0.1923 0.2678 221.7495 0.9254
272 0.5877 0.6777 0.3620 0.2749 232.0774 0.9685
273 0.5591 0.5969 0.3317 0.3499 247.5812 1.0332
274 0.5761 0.7042 0.2751 0.3200 229.1300 0.9562
275 0.6032 0.5553 0.3448 0.3193 254.0511 1.0602
276 0.4332 0.5580 0.1189 0.1600 246.5747 1.0290
277 0.5851 0.5439 0.3834 0.2520 246.9102 1.0304
278 0.5531 0.4472 0.2154 0.1032 253.4999 1.0579
279 0.5342 0.5928 0.2171 0.2931 232.7963 0.9715
280 0.7256 0.6209 0.3090 0.2353 213.4106 0.8906
281 0.6115 0.6997 0.2820 0.2711 230.9751 0.9639
282 0.6624 0.5737 0.2887 0.2871 240.6800 1.0044
283 0.5298 0.6562 0.2728 0.3122 215.4953 0.8993
284 0.6034 0.7123 0.2678 0.2319 236.5584 0.9872
285 0.6921 0.6675 0.3375 0.2408 225.7273 0.9420
286 0.3156 0.4856 0.1573 0.1467 245.1370 1.0230
287 0.4477 0.4241 0.1581 0.2325 262.8453 1.0969
288 0.6302 0.5184 0.2606 0.2911 232.1253 0.9687
289 0.4248 0.4548 0.1709 0.2443 264.1393 1.1023
290 0.6999 0.5557 0.3291 0.2522 241.3749 1.0073
291 0.5532 0.6686 0.2389 0.2439 238.5233 0.9954
292 0.5787 0.6172 0.3780 0.2663 233.8027 0.9757
293 0.4720 0.2747 0.1485 0.1831 271.3760 1.1325
294 0.6224 0.5788 0.2692 0.2930 207.7794 0.8671
295 0.6550 0.5699 0.2059 0.3384 243.5555 1.0164
296 0.6480 0.5499 0.2803 0.3288 230.5678 0.9622
297 0.5599 0.4991 0.2561 0.2912 256.5911 1.0708
298 0.6731 0.6333 0.3354 0.2925 235.6478 0.9834
299 0.3755 0.2417 0.1956 0.1674 270.7530 1.1299
300 0.5025 0.4791 0.3316 0.3000 241.9979 1.0099
301 0.5677 0.6050 0.2781 0.3094 216.5976 0.9039
302 0.4587 0.4341 0.2580 0.1742 258.1487 1.0773
303 0.3457 0.3740 0.1712 0.2576 255.2732 1.0653
304 0.6665 0.8054 0.2203 0.2670 236.5824 0.9873
305 0.6628 0.5363 0.3054 0.2917 243.1002 1.0145
306 0.6062 0.5330 0.2176 0.2317 234.0184 0.9766
307 0.4294 0.3416 0.1570 0.2334 271.5437 1.1332
308 0.5176 0.5744 0.2110 0.2575 258.1007 1.0771
309 0.6540 0.5509 0.3046 0.2460 227.0932 0.9477
310 0.6138 0.7034 0.2603 0.2930 235.7916 0.9840
311 0.4978 0.4038 0.2509 0.1538 264.5467 1.1040
312 0.5630 0.5215 0.2125 0.1738 242.3813 1.0115
313 0.5499 0.5871 0.2492 0.2572 243.2919 1.0153
314 0.5487 0.6291 0.2519 0.2663 236.5344 0.9871
315 0.5132 0.3572 0.2371 0.1984 246.6946 1.0295
316 0.6741 0.7068 0.3360 0.2874 213.4824 0.8909
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317 0.5613 0.6079 0.2294 0.2608 227.7162 0.9503
318 0.6179 0.6208 0.3416 0.2625 231.8138 0.9674
319 0.5689 0.4891 0.2527 0.2139 249.4982 1.0412
320 0.4901 0.4874 0.1783 0.2603 276.5040 1.1539
321 0.4208 0.3983 0.1890 0.2137 265.9125 1.1097
322 0.6645 0.7621 0.2107 0.2571 215.5193 0.8994
323 0.6451 0.5535 0.3048 0.3276 206.1464 0.8602
324 0.4876 0.3694 0.2102 0.1315 288.4638 1.2038
325 0.6214 0.6292 0.3237 0.2590 230.1397 0.9601

The correlation coefficients between A, B, C, D and α are calculated respectively, and
the results are −0.6548, −0.5583, −0.4863 and −0.5379. Obviously, the negative correlation
between them are a little high.

Taking the four types of high-load working state proportions as inputs and the life
coefficient α as outputs, a prediction model on α is established by different algorithms.
Considering the number of datasets is only 325, Multiple linear regression (MLR), Support
vector regression (SVR), and Random forest regression(RFR) are selected because of their
good performance with a small amount of samples for RUL prediction.

3.3.1. MLR

MLR is used to predict the dependent variable as a linear combination of independent
ones; it can map the relationship between a dependent variable and explanatory variables.
The model is defined as:

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi, i = 1, 2, · · · , n (5)

where yi is response vector, xki is regression matrix, βk is regression coefficient, εi is
random error.

3.3.2. SVR

SVR is one of the applications of the Support Vector Machine (SVM). The SVM con-
structs a hyperplane in a high-dimensional space, which can be used for classification and
regression. For a given dataset {(xi, yi), i = 1, 2, · · · , n}, where xi ∈ Rd, yi ∈ R, and n is

the capacity of samples, xi =
[

x1
i , x2

i , · · · , xd
i

]T
are the input vectors, yi is the associated

output value. The regression mode can be expressed as follows:

f (x) = ωÂ·x + b (6)

where ω is a d-dimensional vector and b is the bias term.

3.3.3. RFR

RFR is an extension of the decision tree algorithm, in which decision trees are combined
and each decision tree is independently trained. The training procedure was employed
as follows:

(1) from the training dataset, a bootstrap sample was drawn as a randomized subset;
(2) each individual tree was grown using the randomized subset of predictor variables.

Each tree model f (xi) was defined as yi = f (xi) + εi. The trees were grown to the largest
extent possible without pruning;

(3) repeat the step (2) until the number of trees was grown. Then the predicted results
were aggregated by averaging them [26].
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4. Result Analysis

The dataset of the concrete piston life prediction shown in Table 3 is randomly divided
into a training set and a test set according to a ratio of 8:2. The three algorithms of MLR,
SVR, and RFR are used to calculate the life coefficient α using the data of the training set.
The derived α is then used to predict the life of the parts in the test set using the Formula (1)
program in Python and invoking toolkits to calculate, analyze, and draw. The predicted
life of the concrete piston calculated by each model is compared with the actual working
life, as shown in Figures 6–8.
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As can be seen from Figures 6–8, among the three prediction models, the SVR model
has the best prediction effect.

The root mean square error (RMSE), as shown in Formula (7), is used to evaluate the
prediction results.

RMSE =

√
1
n

n

∑
i
(ŷi − yi)

2 (7)

where ŷ is the predicted capacity value, and y is the real capacity value.
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The RMSE refers to the square root of the mean of the square of all the errors in the
estimated number n. A smaller RMSE value indicates a more accurate prediction.

In order to make a detailed comparison and analysis of the prediction accuracy of each
model, a five-fold cross-validation is carried out. The dataset is divided into five subsets
on average. Four subsets are selected as the training set and the remaining subset as the
test set each time. A total of five validation calculations are carried out, and the RMSE
values of each model are obtained, as shown in Figure 9. As can be seen from Figure 9, the
prediction errors of each model are generally stable, among which the RMSE value of the
SVR model is the lowest and the prediction effect is the best, so we chose the SVR model to
predict the RUL of the concrete piston online.
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5. Dependence of RUL Prediction on Working Time

In order to further analyze the prediction effect of the life prediction model on different
working times of the concrete piston, life prediction was performed at a step size of 5% of
the actual working life, with a typical result of on α and RUL prediction shown in Table 4.
In Table 4, Ma is the actual RUL of the concrete piston.
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Table 4. Data of a concrete piston at different life prediction points.

0 5% 10% 15% . . . 85% 90% 95% 100%

M0 0 12.62 25.25 37.87 . . . 214.60 227.22 239.85 252.47
Ma 252.47 239.85 227.22 214.60 . . . 37.87 25.25 12.62 0
α 1 1.0021 1.0082 1.0089 . . . 1.0479 1.0596 1.0778 1.1026

Mr 239.63 227.51 216.34 203.89 . . . 36.50 26.69 18.41 11.74

Three concrete pistons with an actual working life of 210, 240 and 270 h, respectively,
were selected to analyze the prediction effect of the model, and all the data are calculated to
draw the RMSE curve of the prediction results, as shown in Figure 10. From Figure 10a–c,
it can be seen that the prediction effect is best when the actual working life reaches approx-
imately 80%. The RUL of 325 concrete pistons is predicted using the proposed method,
where the estimation error is less than 4.73%. Figure 10d shows the averaged RMSE value
on the predicted RUL at different working times. It can be seen that, in the early-life stage
of the concrete piston, the prediction has a large error due to less condition monitoring
data. However, the prediction accuracy improves as the working time increases until the
working time is at 80% of the actual working life. Then, the prediction accuracy becomes
worse as the working time increases.

Figure 10. Prediction results. (a) Actual working life of 210 h; (b) Actual working life of 240 h; (c) Actual working life of
270 h; (d) RMSE curve.
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At present, the concrete pistons of the concrete pump trucks are not replaced preven-
tively due to the lack of supportive approaches. They are usually replaced after wearing
until failure, which often leads to the unplanned downtime of the concrete pump truck,
causing unnecessary economic losses and even affecting the project’s progress. To achieve
preventive replacement, it is very important to choose an appropriate replacement time.
Replacing too early will lead to increased costs, and replacing too late may lead to un-
planned downtime. Therefore, it is necessary to develop a replacement plan when the
working time is close to the actual working life and the prediction error is small. Through
the research of this work, it is found that the RUL prediction model of the concrete piston
based on probability statistics and data-driven methods has the best prediction effect when
the concrete piston working life reaches 80% of the predicted RUL; this result can be used
for the formulation of preventive replacement plans. It can be set as a replacement warning
point, which can be used as the main basis for maintenance according to the situation, and
a reasonable maintenance replacement and inventory management plan can be developed
to reduce costs and economic losses.

6. Conclusions

This paper proposes a new method for predicting the RUL of the concrete piston
based on probability statistics and data-driven methods. A life coefficient is proposed to
link the actual life of individual concrete pistons and the average useful life derived from
the actual replacement data of a set of concrete pistons. The life coefficient is considered to
be mainly affected by the load working state, and it is found that support vector regression
could provide a good estimation on the life coefficient. The RUL of 325 concrete pistons is
predicted using the proposed method, where the estimation error is less than 4.73%. It is
also found that that the prediction accuracy is best when the working life reaches 80% of
the predicted useful life, which puts forward the replacement warning point to provide
support for inventory management and a replacement plan of the concrete piston.
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