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Abstract

In today’s increasingly interconnected world, outbreaks of disease or contamination can

spread widely and cause considerable impact on public health. Proactively assessing the ability

to identify the source of an outbreak in a networked system is a critical step in aiding emergency

and operational preparedness management prior to a crisis situation. While many methods have

been developed to identify the source of an outbreak once it has occurred, limited research has

been devoted to developing measures to assess the overall ability of a network structure to

support accurate source identification, which we call traceability. Furthermore, while significant

work has focused on understanding the role of network structure on propagation dynamics,

its impact on traceability has yet remained unstudied. Here, we introduce a novel, compre-

hensive measure of network traceability, which calculates the information-theoretic entropy of

the posterior probability distribution over feasible sources resulting from inferring the source

location. By capturing information about the full posterior probability distribution, this mea-

sure presents an improvement over the binary logical outcome of the prediction accuracy metric

generally applied to assess source identification method performance. Using food supply chain

networks as an example, we use this measure to provide the first study systematically evaluating

the role of network structural parameters on traceability, comparing both synthetic networks

generated to exhibit a range of structural features known to be relevant to contamination prop-

agation and real networks representing the Chinese pork supply chain across various cities. This

analysis yields insights about the relationship between traceability and network structure, some

counter-intuitive, and more generally, illustrates how this measure can be used in emergency and

operational preparedness to proactively assess network traceability and recommend strategies

for its improvement.

∗Corresponding author. Email: xin.lu@flowminder.org
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1 Introduction

An important problem for the management and regulation of networked systems involving spreading

processes is improving the ability to trace the source of a spreading agent. This ability is of particular

importance for both public health management and emergency preparedness in diverse contexts; if at

the onset of a large-scale outbreak the contamination origin or source is identified efficiently, damage

can be prevented or reduced [1, 2, 3, 4]. However, the ability to identify the source of an outbreak,

which in this paper we refer to as traceability, can vary extensively for different networked structures

and spreading processes. Proactively assessing network structural traceability can aid emergency and

operational preparedness management on the need and allocation of resources to improve traceability.

In recent years much work has emerged on the problem of identifying the source of outbreaks

spreading in a network. Approaches have been developed in the context of epidemic-type contagion

processes including infectious disease outbreaks in human contact networks [5, 6, 7] or rumors spread-

ing in social networks [8, 9, 10], and in transport-mediated diffusion-type processes such as diseases

spread through water networks [11] and global air travel [12], or foodborne disease contamination

spread through food distribution networks [13]. While the problem context and methodological ap-

proach vary, the general objective of the network source location problem is to rank all possible source

nodes according to their relative likelihood of being the outbreak source, given available knowledge

of the underlying network structure and the location (and in some cases the timing) of the reports

of contamination at observing nodes. An intuitive framing of this problem, and that taken by the

majority of the existing methods, is to invoke a probabilistic inference approach that determines a

posterior probability that each possible source is the true source, and with it a maximum likelihood

estimate of the true source location [8, 11, 6, 7, 13]. For a review of network source identification

approaches classified by methodological approach, see [13].

Despite the substantial stream of work on the source location problem, limited research efforts

have focused on developing quantitative measures of the overall ability of a network structure to sup-

port accurate source identification, i.e. traceability. When characterizing the accuracy of a proposed

algorithm to identify the source of an outbreak of contamination or contagion on a specific network

structure, the majority of the methods reviewed above report one of two metrics: mean prediction

accuracy, based on the binary outcome of identifying the source in e.g. the first position or top-ten

positions; or mean prediction rank, the position of the true source in the ordered ranking over all

possible sources; both averaged over a large number of simulated outbreaks. These accuracy metrics
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can be seen as the closest proxy to a quantitative measure of traceability in the existing literature.

However when it comes to measuring the ability of a network structure to support accurate source

identification, these accuracy metrics are suboptimal: relying on either a binary outcome or a single

value (the rank of the true source), they do not take into account the rest of the information from

the resulting posterior probability distribution over possible sources.

Furthermore, while the traceability of various network topologies has been investigated in order to

demonstrate the robustness of an algorithm to differences in network structure, no research has con-

tributed a systematic study of the role of network structural parameters in determining traceability.

This is in spite of the well-established fact that network structure is a key determinant in spreading

dynamics [14, 15, 16], with much research having focused on understanding how the properties of the

underlying network shape the size and dynamics of potential spreading events. The seminal works

in this area considered how spreading dynamics are shaped by the structural properties of stylized

networks such as small-world, characterized by the property of high clustering and short average path

lengths between any two nodes [17], and scale-free, characterized by the heterogeneous distribution

of connectivity to other nodes [18, 19]. The influence of network structural properties such as degree

heterogeneity, betweenness, degree density, weight distribution, and others on outbreak spreading

characteristics have since been studied extensively over the past decade [20, 21, 22, 23]. More re-

cently, this approach has been applied in the context of commodity or livestock trade with the aim

of assessing how network topology mediates the dynamics and size of an outbreak of deliberate or

unintentional contamination. Such work has investigated the role of heterogeneity in degree distri-

bution, degree density, directionality, and modularity in swine and cattle trade networks [24, 25, 26]

and the milk supply chain [27], and degree of overlap or mixing in the food production supply chain

[28, 29].

Network structure should likewise be a determining factor in backward tracing. In the case of

food distribution, one can easily imagine that for a supply network composed of vertically integrated

supply chains, any observation of contamination can be correctly traced back to the original source

[30]. On the other hand, if there are a lot of cross distribution links among entities in the chain, the

uncertainties of source contamination can be extremely complex. As the number of links increase, the

number of pathways along which the contamination could travel will increase, and the predictability

decreases. Each network structural variable may influence traceability in a particular way, which

may change when taken together with other variables, allowing for factorial combinations.

1.1 Approach and Contributions

Studying the role of network structural parameters on traceability has important practical impli-

cations for emergency and operational preparedness, helping to develop an understanding of how

and in what situations it might be possible to accurately identify an outbreak source. Being able

to forecast where will be more difficult can inform the proactive allocation of resources to improve
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network structural traceability. A systematic study of how differences in network structure impact

this ability may therefore be of value to governmental agencies and regulatory bodies (e.g., the CDC,

DOD, FDA, USDA) who may have influence on network design through regulations; or to industry

groups who can take private market initiatives to adapt or influence network structure. While this is

an important area of research, our review has not identified any studies that systematically explore

the role of network structural properties in determining the ability to identify the source of spreading

phenomena for complex networks.

This paper aims to address two gaps in the network source identification literature by (i) defining

a novel, comprehensive measure for the traceability of a network structure, and (ii) using this measure

to produce the first study that systematically evaluates the effect of network structural parameters

on traceability. While the traceability measure itself is general and can be extended to any network

source identification setting where a probability distribution is generated, we illustrate it here using

the case of foodborne disease and food distribution networks. First we develop a stylized model of

the food supply chain, a three-layered Farm-Distributor-Retailer model, and a food flow and mixing

model. To estimate the source of an outbreak on this network, we adopt a Bayesian probabilistic

inference approach, using the food flow and mixing model to identify the posterior probability distri-

bution of any feasible source node being the true source in a manner similar to Horn and Friedrich

[13]. Our contribution is then to define a measure of network traceability, the ability of a network

structure to facilitate identification of the source, in a way that captures all information from the

posterior probability distribution over all possible sources. This novel approach, network traceability

entropy (NTE), calculates the information-theoretic entropy of the posterior probability distribution

over possible sources, averaged over combinations of observed contaminated nodes. NTE thereby

captures the full information provided by the differing probabilities while still generating a single

output score for the ability of a network structure to support accurate source identification.

Entropy in information theory is a measure of the amount of information – or equivalently, the

amount of uncertainty or unpredictability – carried by a random variable [31], in this case, the

posterior probability distribution representing an estimate of the source location. While originally

developed in communication theory to measure the how much useful information a message is ex-

pected to contain, the information-theoretic definition of entropy has, almost since its inception,

been applied as a measure of system uncertainty, information, or predictability in many other fields

such as in physics, mathematics, and statistics, as well as in complex system analysis in various

domains from biology [32, 33, 34] to linguistics [35] to studies of human mobility [36, 37, 38]. It

is thus particularly well suited to the task of measuring network traceability, since in this case it

is calculated over the posterior probability distribution over possible sources and is measuring the

predictability in identifying the true source.

By summarizing information about the full probability distribution over feasible sources into a

single score, this measure presents an improvement over the existing simulation accuracy or rank
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metrics that are based on a binary outcome or single rank value, while being just as convenient. In

this paper we demonstrate the improvement, first comparing to the simpler simulation predictive

accuracy metric and showing results are not 1-1. We also provide a simple comparative example to

illustrate that there is more information captured in the entropy-defined measure than the binary

predictive accuracy measure. A more comprehensive metric for network traceability can better inform

policies to improve network traceability.

We then go on to use this measure to provide the first systematic comparison of network struc-

tures on their traceability. We identify a few network structural features that are important to spread

and should likewise be important to traceability – link density, connective heterogeneity, and com-

munity structure. We parameterize these features and simulate network structures across a range

of parameter values, then use NTE to draw conclusions about the role of network configurations

on traceability. This comparative analysis using simulated network structures allows us to draw

theoretical conclusions about the role of these specific network features on traceability. We then

demonstrate the practical relevance of traceability analyses by including a case study based on data

from China’s new product tracing program, the “National Important Product Traceability System”.

We use this dataset to compare pork supply chain networks across 10 Chinese cities, and discuss how

NTE might be used to recommend strategies for improving traceability in this industry.

Finally, we emphasize that in this paper we define the term traceability as a measure of the ability

to identify the source of a spreading event in a network. This is a precise, quantitative definition of

a network-theoretic measure. We acknowledge that the term has many uses and has received many

definitions in the food safety, supply chain, technology development and regulatory literature. For a

review of existing definitions of traceability and usage in technology development, see the Supporting

Information.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2, we define the food supply network

and contaminations spreading models and define NTE, the measure of network traceability. In Section

3, we introduce the simulation setup and define Prediction Accuracy, a simulation-driven score of the

accuracy of a identifying outbreak sources based on the binary accuracy metric used in the existing

literature. In Section 4, we provide an illustrative example demonstrating how NTE efficiently

encodes and transmits information regarding the uncertainty of the source identification problem.

We compare NTE to the Prediction Accuracy measure as noted above. We then demonstrate how

traceability entropy can be used to compare between various network configurations categorized by

their link density, connective heterogeneity, and community structure. In Section 5 we apply the

measure to network data on the pork supply chain in China. We discuss how NTE might be used to

recommend strategies for improving traceability in this industry. Section 6 presents the conclusions

drawn from our results and identifies extensions and future work.
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2 Defining Network Traceability Using Entropy

2.1 Food supply network model

The food supply chain is composed of a wide diversity of products and companies which operate

in different markets and sell a variety of food products. Here we will use a modeling framework

that represents the network of distribution for a single commodity, such as spinach, but that can

be generalized to any commodity. The steps encountered between production and consumption

can vary considerably between food commodities as product moves through growers, processors,

packagers, brokers, distributors, wholesalers, retailers, restaurants, etc. In order to use a model that

is representative of the food supply chain in general, we aggregate the underlying trade network into

the categories of farms, distributors, and retailers (Figure 1). In this simplified supply network, G,

food is produced by each farm Fi, 1 ≤ i ≤ |F |, transported to different distributors Dj, 1 ≤ j ≤ |D|,
mixed with food from other farms at these distributors, and then sold to customers at retailers

Rl, 1 ≤ l ≤ |R|. Extensions to the three-layered network are straightforward. The number of farms,

distributors, and retailers are denoted as |F |, |D|, |R|, respectively.

Farm

Distributor

Retailer

Figure 1: The Farm-Distributor-Retailer food supply network model.

2.2 Food flows and mixing

We now define a model for food flows through the supply network.

Let fi = xi/
∑|F |

i′=1 xi′ be the proportion of food produced by farm Fi, 1 ≤ i ≤ |F | , where xi is
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the total amount of food produced at farm Fi. Let FD, DD, DR be the food distribution matrices

between the layers of farms, distributors and retailers, respectively. Let the elements in each of these

matrix, fdij, ddjk, drkl denotes the proportion of food products sent from the source node to the

receiver node. Finally, let FR be the food composition matrix in which each element fril is equal to

the proportion of food from farm Fi ending up at retailer Rl. FR can be calculated as:

FR = FD ×DD ×DR. (1)

2.3 Probabilistic source identification

Given an outbreak of contamination reported at a set of retailer nodes R∗l ∈ Ω, |Ω| = λ, the posterior

probability that Fk is the true source can be written as

P (Fk|Ω) =
P (Fk)P (Ω|Fk)∑|F |
i=1 P (Fi)P (Ω|Fi)

, (2)

where P (Fk) is a prior probability distribution over the k feasible source farms. If we assume that

any unit of food produced is equally likely to generate contamination a priori. Then, the prior

probability that any farm node is the source is equal to the relative production quantity at each

source node, such that P (Fk) = fk, 1 ≤ k ≤ |F |.
To determine the likelihood, we first expand P (Ω|Fk) in terms of the individual illness reports at

nodes R∗l ∈ Ω,

P (Ω|Fk) = P (R∗1, R
∗
2, . . . , R

∗
λ|Fk). (3)

If we assume that each illness observation i is mutually independent of every other observation,

the joint probability distribution in Equation 3 can be factorized into a product of the individual

probabilities of each reporting retailer R∗l , such that

P (R∗1, R
∗
2, . . . , R

∗
λ|Fk) (4)

= P (R∗1|Fk)P (R∗2|Fk) . . . P (R∗λ|Fk) =
∏

R∗l ∈Ω

P (R∗l |Fk).

In practice, we can reasonably expect the condition of mutual independence to be validated

[39]. This can be understood by noting that the observations of illness at nodes Ri are mutually

independent if all nodes receive contaminated food from batches departing separately from the source.

For large contamination incidents where the contaminated quantity will be larger than what fits in

one truck, this is necessarily the case. Furthermore, large-scale outbreaks are characterized by the

widespread distribution of contaminated product throughout the supply chain resulting in reports of

contamination in disperse geographical locations [40, 41]. This dispersion implies that many more

contaminated food items leading to reports of illness at different nodes will travel in separate batches

than will travel together.
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If we assume that the probability of reporting infection is proportional to the amount of contam-

inated food received at each retailer, then given an outbreak at farm Fk, the probability that retailer

node R∗l observes an illness is then equal to the proportion of food produced at farm Fk delivered to

retailer R∗l , i.e.

P (R∗l |Fk) = frkl, (5)

The likelihood is consequently found as the product of the proportions delivered to each R∗l ∈ Ω,

P (Ω|Fk) =
∏

R∗l ∈Ω

frkl, (6)

And equation 2 becomes

P (Fk|Ω) =

fk
∏

R∗l ∈Ω

frkl

|F |∑
i=1

fi
∏

R∗l ∈Ω

fril

. (7)

Then for each set of observations Ω, we obtain a list of posterior probabilities: P (F1|Ω), P (F2|Ω), . . . ,

P (Fk|Ω), . . . , P (F|F ||Ω) which forms a distribution and fulfills
|F |∑
k=1

P (Fk|Ω) = 1.

2.4 Network Traceability Entropy

With the posterior probability distribution defined, we can use the information theoretic definition

of entropy as a measure of the uncertainty in determining the source farm given an outbreak in the

node set Ω,

E(Ω) = −
|F |∑

k=1

P (Fk|Ω) logP (Fk|Ω). (8)

Entropy can be seen as a measure of uncertainty about a value sampled from a probability

distribution [31, 36, 37]; in this case, it measures the uncertainty in determining the source of the

outbreak Fk given the contamination set Ω. If we consider a game where we are allowed to ask

yes/no questions until we identify the correct outbreak source, the entropy of the posterior probability

distribution P (Fk|Ω) can be interpreted as the average number of (suitable) yes/no questions we need

to ask to pinpoint the source. Turning this around, 2E is the uncertainty in the source location, or

the effective number of plausible source candidates. The reader may wish to refer to Section 4.1 for

an example illustrating this principle.

If we have little uncertainty about the source, then we get to the correct answer with a few

questions. An extreme case is when E(Ω) = 0. This can happen when only one feasible source node

Fk exists, with probability P (Fk|Ω). In this case we do not need to ask any questions to get to the
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value of the true source. In the other extreme, uncertainty is greatest when the amount of food is

distributed equally across all farms to all retailers, i.e. E(Ω) = −∑|F |k=1
1
|F | log 1

|F | = log |F |. These

two extreme cases bound E(Ω) as

0 ≤ E(Ω) ≤ log |F |. (9)

Finally, we define the Network Traceability Entropy (NTE) as the average entropy for food supply

network G given any number of contamination reports λ:

Eλ =
∑

Ω:|Ω|=λ
E(Ω)/

(|R|
λ

)
. (10)

Network Traceability Entropy so defined permits an intuitive definition of the uncertainty of source

traceback. While food distribution networks are used as the illustrative example in this paper, the

measure can apply to any problem of network source identification when a posterior probability

distribution for the source location can be computed given some number λ of reported cases.

3 Experimental Design

We have proposed NTE as a measure of the uncertainty of accurate source identification in a network,

traceability. We now introduce a simulation environment that we will use to evaluate the measure

and present a systematic study of the role of network structure on traceability.

3.1 Network configuration

We adopt a few key structural features to generate a spectrum of networks across varying parameters

(Table 2). First, to approximate the relative size of food supply network actors, we fix the number of

farms, distributors, and retailers at |F | = 100, |D| = 20 and |R| = 500, respectively. Let d̄outF , d̄inFD,

d̄outDR, and d̄inR denote the average outdegree of farms, average indegree from farms to distributors,

average outdegree from distributors to retailers, and average indegree of retailers from distributors,

respectively. Based on d̄outF , d̄inFD, d̄outDR, and d̄inR , we generate sets of degrees d drawn from certain

probability distributions. We then randomly pair links between related layers according to the

Network Configuration Model [42] . In the following studies we fix the degree distributions to be

uniform (d ∼ U(1, 2d̄−1)), binomial (d ∼ B(dmax, d̄/dmax ))), or exponential (d ∼ Exp(d̄)), and vary

the density of connections d̄outF and d̄outDR from low : d̄outF = 2, d̄outDR = 30; medium: d̄outF = 3, d̄outDR = 40;

to high: d̄outF = 4, d̄outDR = 80. We choose these values because they are representative of real food

supply networks, as can be seen by comparison to the 10 real networks from the case study analysis

in Section 5 (see Table 2).
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Unless otherwise stated, we assume all farms produce a unit amount of food and for each link food

is distributed evenly among all outgoing links of an actor. For the purpose of this study, we consider

only links between farms and distributors, and distributors and retailers. It is straightforward to

extend the approach demonstrated to networks with more complicated interactions.

3.2 Simulation setup

With the above specifications, we generate networks for each of the low, medium and high settings,

with degree distributions configured from uniform, binomial and exponential distributions. For each

density and degree distribution setting we generate 1000 networks randomly, for a total of 9000

networks. The NTE, Eλ, is calculated for each network according to Equation 10.

3.3 Prediction accuracy benchmark

The closest proxy to a quantitative measure of traceability in the existing literature is the standard

predictive accuracy metric used to assess the mean source identification algorithmic performance for

a given network structure: an outbreak is simulated, the source identification algorithm is applied,

and a binary logical outcome recorded representing whether the simulated source is identified. When

this accuracy metric is averaged over a large number of simulated outbreaks for a given network

structure, this can be considered a measure of network traceability. Here we formally define such a

measure, prediction accuracy, 〈γ(g)〉, in order to provide a benchmark of the state-of-the-art measure

of network traceability, which we will use to make comparisons with NTE.

Spreading scenarios are generated through Monte Carlo simulation. First, a farm Fs is randomly

chosen as the source of contamination and the subset, Θ, of all retailers that can be reached by

this farm is determined. We assume that only a subset of retailers in Θ actually present with the

contamination, a result of the contamination being passed between links with a probability less than

one, as well as example-specific factors such as underreporting of illness. This subset, Ω, is sampled

in proportion to the food composition frsi received at each retailer Ri reached by the source farm.

The probability that a farm Fk is the outbreak source given the reports of illness at retailers Ri ∈ Ω

can then be determined by applying the source estimator in Equation 7. To compute the prediction

accuracy for a given network, we simulate 1000 iterations of the infection and prediction process.

For each iteration we allow a variable number of guesses, g, for the source farm, assigning a 1 if the

outbreak source Fs is within the top g farms with highest probability values and a 0 if it is not.

〈γ(g)〉 is calculated as the fraction of correct predictions.

10
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4 Results

4.1 An illustration of the calculation of NTE

In this section we apply NTE to a specific outbreak example to help establish the reader’s practical

understanding of the measure. The example furthermore illustrates, explicitly, how traceability

entropy effectively encodes information about the uncertainty of the source identification problem.

Figure 2 plots the probability distribution P (Fk|Ω) for the outbreak source farm resulting from a

contamination event given |Ω| = 1, 2, and 3 reports of illness. The probability values are ordered by

their arbitrary numerical identifier, i.e. farm ID. The example is simulated on a network in which

all degree distributions are binomial, d ∼ B(dmax,
d̄

dmax
), and the density of connections are medium,

i.e. d̄outF = 3 and d̄outDR = 40. For reference, the outbreak in this simulation was generated from farm

ID 21.

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0 50 100
0

0.1

0.2

0.3

0.4

0.5
λ =1 λ =3λ =2

P(
F k
Ω

)
|

P(
F k
Ω

)
|

P(
F k
Ω

)
|

(a) (b) (c)

farm ID farm ID farm ID

Figure 2: Example distribution for the probability of being an outbreak source given (a) |Ω| = 1; (b)

|Ω| = 2; and (c) |Ω| = 3.

The example in Figure 2 demonstrates expected behavior: as the number of observations of illness

increase, the uncertainty in identifying the source farm will decrease. This is due to two important

factors: fewer sources are possible options, and, fewer sources probable. First, additional observations

will rule out farms that are unable to reach all retailers in the observation set. In the example we

see that the number of feasible farms, or farms with a nonzero probability, decreases from 26 to 22

as the reports increase from |Ω| = 1 to |Ω| = 3. Second, the probability values distributed across the

farms will become more pronounced as the number of terms in the product forming the likelihood

function increase. This differentiation of probability values is clearly visible as the number of reports

increase over the 3 plots in Figure 2, with the low values becoming lower while the high probability

values grow higher. This is especially noticeable for the maximum probability values, the true source

at farm ID 21.
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Table 1: Illustrative calculations for the examples presented in Figure 2.

#. observations Entropy #.feasible source effective #. feasible sources #. farms with

|Ω| E(Ω) 2E P (Fk | |Ω| = 2) > 0.05

1 3.9 24 14.6 13

2 3.2 23 9.1 8

3 2.6 22 6.0 6

While the probability distribution across all feasible sources is necessary to fully characterize

the uncertainty in the source identification problem, we now show how the traceability entropy

efficiently encodes and transmits information about this uncertainty. Although we do not have an

intuitive understanding of the meaning of the entropy score itself, the reverse value of 2E, as discussed

in previously, has a practical meaning we can understand: it represents the uncertainty in the source

location, or the effective number of feasible sources. This can be reflected in what we see in the

distributions plotted in Figure 2. Table 1 summarizes the entropy score, the number of feasible

source candidates, and the effective number of feasible source candidates for the 3 scenarios in the

example. When |Ω| = 2, the number of feasible farms is 24 while the effective number is 2E = 9.1,

which corresponds roughly to the 8 farms in Figure 2(b) with significant probability values, e.g.,

P (Fk | |Ω| = 2) > 0.05. When |Ω| = 3, the number of feasible farms has decreased only by 2, but the

effective number of feasible farms has decreased to 2E = 6, which corresponds exactly to the 6 farms

with significant probability values. While not every calculation of 2E will correspond so precisely to

the effective number of feasible farms, this example functions to demonstrate the useful relationship

between entropy and uncertainty in the source detection problem.

To take this example one step further, in Figure 3 we show simulation results for E1, E2 and E3 for

the same network setup. The Eλ results are averaged across 100 simulated network structures with

the error bar designating one standard deviation from the mean. We observe that E1 is around 4.1,

indicating that on average for this network, the effective number of feasible contamination sources is

24.1 = 17.1 farms after one illness has been observed. Increasing the number of observations greatly

reduces the uncertainty in this network: when two illnesses have been observed, the effective number

of feasible sources reduces from 17.1 to 22 = 4 farms; with three observations, it reduces to 20.6 = 1.5,

fewer than two farms.

4.2 Noting the difference between NTE and prediction accuracy

We now provide a simple example to illustrate how NTE captures more information than the binary

prediction accuracy metric defined in Section 3.3, which can be seen as the state-of-the-art measure

of network traceability. Imagine a scenario involving two networks, A and B, each with three farms

and one retailer. Given a contamination observed at the retailer in each network, let’s suppose
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Figure 3: Illustration of traceability entropy E1, E2 and E3 for a network in which all degree

distributions are binomial, d ∼ B(dmax,
d̄

dmax
), and the density of connections are medium, i.e. d̄outF =

3 and d̄outDR = 40. Results are averaged across 100 simulated network structures with the error bar

designating one standard deviation from the mean.

that the probability of identifying the source is found to be equal to the distribution PA(F | Ω) =

{0.5, 0.49, 0.01} for A and PB(F | Ω) = {0.5, 0.25, 0.25} for B. The NTE for A and B in this

scenario are E1
A = 0.7422 and E1

B = 1.0397, which indicates that the ability to identify the source

of outbreaks in network A is more predictable, or that network A encodes less uncertainty, than

network B. However, if we apply the prediction accuracy metric with g = 1, we can see that the

prediction rate would be 〈γA(g)〉 = 〈γB(g)〉 = 0.5; that’s to say, if we use prediction accuracy to

measure the ability of tracing, the two networks becomes indistinguishable.

4.3 Correlation between NTE and prediction accuracy

In this section we quantify the correlation between the entropy-based measure and the prediction

accuracy metric, demonstrating that the measures are not identical. As demonstrated in the examples

above, NTE is calculated based on the full posterior probability distribution over all sources, encoding

more information than the binary prediction accuracy metric.

To compare NTE and the prediction accuracy, we compute both measures in parallel for each of

the 9000 networks generated for evaluation. Figure 4 presents the results, demonstrating a strong

correlation between the NTE Eλ and the prediction Accuracy 〈γ(g)〉. As expected, the accuracy of

identifying the source of simulated outbreaks decreases as NTE increases. With one guess, prediction

accuracy is a monotonically decreasing function of NTE with strong correlation; the Pearson corre-
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lation coefficient for both λ = 1 (Figure 4(a)) and λ = 2 (Figure 4(c)) is as high as -0.97 (significance

p < 0.000). Prediction accuracy clearly increases with the number of guesses, i.e., the more farms

that can be investigated, the more likely it is to find the correct contamination source. For these

stylized networks, when g = 10 and λ = 1, there is a 60% ∼ 70% chance of finding the source for

networks with low NTE (E1 < 3), while the likelihood remains low (30% ∼ 40%) for networks with

high NTE (E1 > 4).
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Figure 4: Prediction accuracy 〈γ(g)〉 for different numbers of guesses g as a function of Network

Traceability Entropy Eλ, based on outbreaks observed in one retailer (a-b) and two retailers (c-d).

In (a) and (c), the prediction accuracy 〈γ(1)〉 for g = 1 guess for the source farm is highlighted. In

(b) and (d), intermediate curves represent the number of guesses g from 2 to 9.

Still, there are areas where the correlation between NTE and the Prediction Accuracy is not

monotonic, which is attributable to the differences in the two measures as discussed above.

4.4 Effect of Network Structure on Traceability

In this section we use Network Traceability Entropy to facilitate comparisons between the trace-

ability of different network configurations. Food distribution networks are characterized by multiple

structural features, which may exert a distinct influence on traceability either independently or in

combination. We apply the measure to evaluate the role of several structural parameters on trace-

ability: degree density, degree heterogeneity, and regional structure.
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4.4.1 Network density and degree distribution

The density and the heterogeneity of connections between farms, distributors and retailers are two

major factors affecting traceability. High link density means more pathways for disseminating the

contamination; the number of pathways along which the contamination could travel will increase,

and the predictability decreases. Furthermore, the distribution of the degrees supplies relevant

information about the structure of a network and also about food safety. Food distribution networks

are characterized by heterogeneity in (i) the distribution of the number of links in or out of each node

across all nodes in a stage, or the in- or out-degree distributions, respectively; (ii) the distribution

of flow volumes across the links leaving a single node; and (iii) the initial volume distribution across

producing nodes at the first stage. This behavior has been observed in network studies documenting

supply chain structure [43, 44, 27, 45], and moreover is characteristic of complex networks in general

[12, 46].

To investigate the role of degree density and heterogeneity on NTE, we generate networks for each

of the low, medium and high degree density settings with degrees configured according to uniform,

binomial and exponential distributions, for a total of nine separate network settings. The NTE scores

E1 and E2 are then calculated as the average over 100 randomly generated networks for each density

and degree setting.

The results demonstrate that NTE follows expected properties, reflecting changes in the trace-

ability resulting from variations in network complexity (Figure 5). First, we observe that NTE visibly

increases with network density for both one and two observations. This follows our expectations,

since greater connectivity means more paths for the contamination to have traveled, more farms to be

feasible sources, and correspondingly more uncertainty in backward tracing. For example, when all

degrees are drawn from a binomial distribution and with two observations, the traceability entropy

increases from 0.5 when the network is sparse (low), to 3 when the network becomes dense (high).

These values correspond to an increase in the effective number of feasible sources of 20.5 = 1.4 for

the sparse configuration and 23 = 8 for the dense configuration, corresponding to a decrease in the

ability to accurately pinpoint the source.

Second, with regard to the effect of the degree distribution heterogeneity, we observe that NTE

scores for networks generated from a binomial distribution are higher than for those generated from

uniform and exponential distributions. Values sampled from a binomial distribution will be focused

around a mean value whereas values sampled from uniform and exponential distributions will be more

heterogeneously distributed. As a result, the amount of food will be more evenly distributed between

farms and retailers in the binomial networks. The evenly spread distribution of food corresponds

to less probabilistic distinguishability between pathways the contamination could have traveled, and

increased uncertainty in the backward tracing problem.

Third, we observe that for each degree distribution setting, the decrease in NTE from one ob-

servation (E1) to two observations (E2) becomes less distinguishable for higher link density settings.
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This again follows our expectations, since the effect of an additional observation of illness in a highly

connected food distribution network will correspond to a less significant reduction in the number of

feasible pathways and sources from which the contamination could have traveled, and thus a less

significant reduction in uncertainty in identifying the source.

(a) (b)low medium high

Figure 5: Network Traceability Entropy for food distribution networks with different densities and

degree distributions. (a) E1; (b) E2. Grey, green, and yellow indicate low, medium, and high degree

settings, respectively. Error bars represents one standard deviation from the mean for each entropy

calculation.

4.4.2 Joint effect of degree distributions

We have now seen that for networks generated exclusively from uniform, binomial, or exponential

distributions, the shape of the distribution affects the traceability of the network. In this section,

we further explore the relationship between degree distribution and traceability by systematically

evaluating NTE for multiple combinations of in- and out-degree patterns. Specifically, we will con-

sider the 34 = 81 combinations of uniform, binomial, and exponential degree distributions from the

4-dimensional parameter space doutF , dinFD, d
out
DR, d

in
R . As in the basic setup, the average degree is held

constant for each distribution. The NTE for λ = 1 observation is calculated as the average over 100

randomly generated networks for each of the 81 settings.

Figure 6 presents the results in what we call a fractal heat map. The map is composed of nine

major cells each of which is again composed of nine minor cells, allowing the four dimensional space to

be represented in a two-dimensional planar plot. Major cells represent the out-degree of farms ( doutF )

and in-degree of distributors ( dinFD) and minor cells represent the out-degree of distributors (doutDR)

and in-degree of retailers (dinDR), with each of the three distributions (binomial, uniform, exponential)

represented as indicated.
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Consistent with findings in the previous section, we can see in Figure 6(a) that the highest values

for traceability entropy are observed when the network is most homogenous, i.e., when all degree dis-

tributions are binomial. Between the out-degree distribution of farms and the in-degree distribution

of distributors, the out-degree dominates the effect on the traceability entropy: low entropy occurs

only when the out-degree distribution of farms is uniform or exponential, and reaches its lowest values

when the out-degree distribution of farms is uniform and the out-degree distribution of distributors

is uniform or exponential. These results emphasize the importance of the degree configurations on

traceability, demonstrating the need to apply network traceability studies to evaluate multi-factorial

combinations of feature dimensions.

We have also investigated the effect of degree distributions under conditions of inhomogeneous

initial production quantities across the farms. Instead of dividing the proportion of food evenly

across all farms, we divide the proportion of food evenly across all links. The Network Traceability

Entropy results for the 81 network configurations are presented in the fractal heat map in Figure 6(b).

As can be seen by comparing Figure 6(a) and (b), the relationship between the degree distributions

and traceability are quite similar. When each link carries the same quantity of food, NTE scores

marginally increase in magnitude, and the patterns of difference between distribution types become

slightly amplified. The observed consistency implies that traceability depends more on the structure

of the supply network than on the initial conditions set by the quantity of food produced at each

farm. This is an important takeaway and should be explored further in future research on network

traceability.

4.4.3 Regional effects

Two major trends have influenced the development of food market structure in recent years, and

they are polarizing: centralization and regionalization. The global industrial food system has under-

gone dramatic centralization, or the concentration of production into fewer, larger actors with more

connections and larger supply reach [47, 48] . This trend has obvious economic benefits, increasing

efficiency, reducing costs, and producing higher profit margins. The trend is also motivated by the

consumer demand for a wider availability of food products, which have more than doubled between

2000 and 2010 [27] . At the same time, locally produced food is seeing a reemerging demand, mainly

in developed countries, for a variety of reasons including higher product quality and stimulation of

local economy [48, 49] .

To model regional structure in food supply networks, we evenly divide the farm, distributor, and

retailer supply chain sectors into five hypothetical regions. We introduce a parameter p determining

the adherence to these regions, such that links are formed between supply sectors within the same

region with probability p and with actors across all regions with probability 1 − p. Consequently,

p = 0 represents the absence of regional structure, or complete centralization, and p = 1 represents

the extreme constraint that food is only distributed within the local community, or complete region-
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Figure 6: Fractal heat map depicting Network Traceability Entropy E1 results for networks generated

with different distributions determining the configurations of links out of and into each supply stage

of farms, distributors, and retailers, i.e. doutF , dinFD, d
out
DR, d

in
R . (a) All farms produce same amount of

food; (b) the amount of food produced in each farm is proportional to its out-degree. Major grid

cells in the heat maps represent the out-degree of farms ( doutF ) and in-degree of distributors ( dinFD

) and minor cells represent the out-degree of distributors ( doutDR ) and in-degree of retailers ( dinDR ),

with each of the three distributions (binomial, uniform, exponential) represented as indicated.

alization. We then test the effect of p on NTE at each regionalization value and each density, for a

total of 18 network settings. Results are presented in Figure 7.
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(a) (b) (c)

(d) (e) (f)

Fout=2, Dout=30 Fout=3, Dout=40 Fout=4, Dout=80

Fout=2, Dout=30 Fout=3, Dout=40 Fout=4, Dout=80

Figure 7: Network Traceability Entropy as a function of regional structure. (a) - (c) E1; (d) - (f) E2.

From left to right grey, green, and yellow indicate low, medium, and high density, respectively. Each

plot (a) through (f) depicts the traceability entropy Eλ for networks generated with the regional

constraint parameter p, for the given density level. Solid lines represent food distributed equally

across the farms and dashed lines represent food distributed equally across the outgoing degrees.

We observe that when only one node has reported illness, NTE decreases as local structure

increases; in other words, as centralization decreases, traceability increases. This is as expected, since

the number of sources any single retailer can connect to will decrease as the regional components

become more segregated; in the extreme case, a given retailer will only be able to connect to the

subset of farms within its region.

When two nodes have been contaminated, traceability entropy exhibits notably different behavior,

decreasing with increasing p but jumping up to a maximum value when p reaches 1 and the regions

have become segregated. What is happening is that when p = 1, independent sub-networks have

been created that are smaller yet denser than the original network. When p < 1, NTE gradually

decreases as the localization constraint increases for similar reasons as for one contaminated retailer;

either both contaminated nodes are in the same region and can connect to the subset of farm nodes

within that region, or the nodes are in different regions and have an even lower chance of linking to
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farms connecting to both regions.

We also note that the above findings are not biased by the initial distribution of food production.

The effect of regionalization on E1 and E2 is very similar whether the amount of food produced is

evenly distributed across the farms or evenly distributed across all outgoing links.

These findings suggest that regional structure has a significant effect on a network’s traceability.

For non-extreme cases, i.e. regionality parameter values around 0.5, cross-regional structures with

high centralization exhibit lower traceability than less dense, more contained local structures. How-

ever decreasing centralization and increasing local supply structure will improve traceability only to

a point. When entire sections of a network are isolated into independent components, a threshold

is crossed and traceability decreases. Some degree of mixing between components is needed to limit

the feasible source set and decrease the uncertainty in the source identification problem. This insight

has important implications for policy and practice and should be further investigated given current

trends in global food market systems.

5 Case Study

5.1 Data description

Our case data comes from China’s “National Important Product Traceability System” (NIPTS),

which is initiated under the instructions of the State Council and is constructed by the Ministry

of Commerce (MOFCOM), in conjunction with Ministry of Industry and Information Technology

(MIIT), Ministry of Agriculture (MOA), China’s Food and Drug Administration (CFDA), among

other agencies, to build a national level platform for sharing and exchange of traceability data

amongst relevant departments, enterprises, producers and traders of key products including edible

agriculture products, food products, drugs, agricultural inputs, special equipment, and hazardous

materials and rare earth. The NIPTS was established in 2014 with the goal of improving food

safety and promoting the government’s “Internet and Agriculture Act” [50]. The system has been

implemented in more than 15,000 corporations and 320,000 shops across 58 piloting cities, and

continues to expand. Since its establishment in 2014, more than 2 billion transaction records have

been collected, with the NIPTS receiving around 3 million records on a daily basis. Details of the

implementation and updated progress of the NIPTS can be found from the government’s webpage

www.zyczs.gov.cn.

Without loss of generality, we analyze pork supply chain data from the first batch of 10 NIPTS

pilot cities (marked as green nodes in Figure 8) during the year of 2015. The data documents

the flow of pork between the three supply chain stages of farms, slaughterhouses, and retailers for

participating establishments. For each establishment, the origin, destination, date, and volume of

each transaction are recorded. Setting farms, slaughterhouses, and retailers as nodes and transactions
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as links, we transform the data into supply chain networks. As the NIPTS is still expanding, the data

and resulting networks may only cover a portion of the real pork supply chain in the cities considered.

The analysis demonstrated here therefore serves as an illustration of what can be learned by applying

Network Traceability Entropy to real network data, and how it can inform the design or redesign of

networks for improved traceability.
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Figure 8: Map of cities covered by the “Important Product Traceability System” (NIPTS), a Chinese

Ministry of Commerce initiative established in 2014. As part of this system, traceability data on

a variety of food products has been collected across 50 piloting cities as indicated. We study pork

supply chain data for the first batch of 10 piloting cities, marked in green.
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Figure 9: Visualizations of the pork supply chain networks for ten cities in China based on data from NIPTS. Cities from left to

right: Ningbo, Hangzhou, Chengdu, Chongqing, and Kunming on the top and Wuxi, Shanghai, Qingdao, Nanjing, and Dalian on

the bottom. Colors represent type of node with farms in black, slaughterhouses in yellow, and retailers in green. Node size and edge

weights corresponding to the total volume of product flows.
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5.2 Network structural analysis

Figure 9 depicts the networks for the 10 pilot cities and in Table 2 we list the size and average

in- and out-degree between nodes in each stage. We include the low, medium, and high density

networks from Section 3 for comparison, demonstrating that the values chosen for simulation studies

are representative of the values in the real data. We also plot in Figure 10 the distribution of the

volume of pork carried along all links from farm to slaughterhouse (in yellow) and slaughterhouse to

retailer (in green) across the 10 networks. The plot depicts the probability of observing a transaction

of volume w′, which is normalized by the maximum observed transaction volume for each pair of

supply chain stages.

The 10 networks differ widely in size and density of connections. The variation in density is

considerable, with some networks exhibiting average densities slightly lower than the low density

setting explored in the simulation studies (e.g. Qingdao) and other networks exhibiting densities

much higher than the high density example networks (e.g. Chengdu, Chongqing, Shanghai, and

Wuxi). Despite the variability in density, the networks all share a similar connection motif of a

proportionally small number of slaughterhouses connected to a much larger number of retailers,

visible as hub-and-spoke patterns in the network visualizations. Furthermore, most of the cities

feature slaughterhouses supplied by multiple farms and which in turn supply a large number of

retailers. With high in- and out-degrees, slaughterhouse nodes act as “bottlenecks” in the forward

flow of product through the network. Large bottlenecks are especially visible in networks of the

cities Chongqing and Wuxi. We have already seen that density is an important factor in determining

traceability. Below we will see that bottlenecks are another important factor in determining (or

limiting) traceability.

5.3 Correlation of NTE and predictive accuracy in the 10 pilot cities

We start by measuring the correlation between the NTE Eλ and the prediction accuracy 〈γ(g)〉 for

each network. Following the methodology described in Section 4, we create outbreak scenarios then

calculate the probability of accurately identifying the simulated outbreak source, allowing a variable

number of guesses g ∈ [1, 10] for the source farm. Figure 10 presents predictive accuracy at each

value of g as a function of NTE for outbreaks observed in λ = 1 retailer (b) and λ = 2 retailers (c).

Results at g = 1 guess are indicated in green and at g = 10 in yellow.

The results in Figure 10 demonstrate that a clear negative linear relationship exists between Eλ

and 〈γ(g)〉 in the pork supply networks. The correlation is more significant for higher values of g.

When g = 10, the Pearson correlation coefficient between E1 and 〈γ(1)〉 is −0.92 (p < 0.001), while

when g = 1, the correlation is −0.82 (p < 0.003). Similarly, for E2, the correlation coefficient is −0.88

when g = 10 (p < 0.001) and -0.64 when g = 1 (p = 0.036). The observed correlation for higher values

of g suggests that when applied to real data, NTE is effectively measuring the ability to trace back
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Table 2: Summary of network parameters used in stylized networks and observed in pork supply

chain data from the NIPTS for ten piloting cities in China.

Stylized Networks |F | |D| |R| d̄outF d̄inFD d̄outDR d̄inDR

Low 100 20 500 2.0 10.0 30.0 1.2

Medium 100 20 500 3.0 15.0 40.0 1.2

High 100 20 500 4.0 20.0 80.0 3.2

City

Ningbo (NB) 185 13 1263 1.9 26.5 99.7 1.0

Hangzhou (HZ) 379 9 228 2.2 92.8 25.3 1.0

Chengdu (CD) 312 56 4467 2.8 15.7 585.1 7.3

Chongqing (CQ) 461 14 2827 2.3 76.3 213.3 1.1

Kunming (KM) 25 3 7 1.0 8.3 3.0 1.3

Wuxi (WX) 251 2 222 1.3 157.5 113.0 1.0

Shanghai (SH) 93 10 4472 2.0 18.5 449.4 1.0

Qingdao (QD) 72 15 85 2.5 11.8 5.9 1.1

Nanjing (NJ) 232 12 2350 1.9 36.5 234.1 1.2

Dalian (DN) 37 2 30 1.5 28.5 15.0 1.0

the source of actual outbreaks, whereas for lower values of g the lack of strong correlation indicates

that prediction accuracy is not capturing the information about the predictability of accurate source

identification as NTE.

5.4 Insights for network design with improved traceability

We now discuss how NTE might be used to recommend strategies for proactively improving trace-

ability in supply chain networks based on insights gained from the analysis of network structural

parameters in the previous sections. One of the core findings from the Network Traceability Entropy

results is that the scores are widely distributed, suggesting that the ability to identify the source of

outbreaks differs markedly across the cities. Values range from a minimum of {E1, E2} = {1.7, 1.4}
observed for Qingdao to a maximum of {E1, E2} = {5.6, 5.3} observed for Wuxi. These scores mean

that in the event of an outbreak occurring in the pork supply chain in Qingdao, the effective number

of feasible sources can be narrowed down to 21.4 = 2.6 farms after two reports of illness, on average.

For the same outbreak and illness reporting scenario occurring in Wuxi, the effective number of

feasible sources is only narrowed down to 25.3 = 39.4 farms. In practical terms, these figures suggest

very different likelihoods of successful investigations to identify the source of an outbreak. Whereas

it might be reasonable for public health responders to investigate and sample the 2 to 3 culprit farms

supplying pork to Qingdao, the same might not be feasible for the 39 potential culprits supplying
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Figure 10: Degree distribution and correlation of traceability entropy and prediction ac-

curacy in pork supply networks for ten cities in China. (a) Distribution of the volume of pork,

w?, carriedalongalllinksfromfarmtoslaughterhouse(inyellow)andslaughterhousetoretailer(ingreen)acrossthe10networks.w?

is normalized by the maximum transaction volume for each set of supply chain stages. (b) Corre-

lation of traceability entropy and predictive accuracy with one observed illness report and (c) with

two observed illness reports. Predictive accuracy results with g = 1 guess for the source farm are

indicated in green and with g = 10 guesses in yellow. Grey circles represent intermediate numbers

of guesses.

Wuxi.

For any outbreak occurring in the Wuxi supply chain, the uncertainty in the traceback investi-

gation can be decreased only by waiting for more cases of illness to report, clearly an undesirable

solution. However, proactive measures could be taken to improve traceability in supply chains like

this by making strategic modifications to the network structure.

For example, we observe that the 3 cities with the highest NTE scores, Wuxi, Chongqing, and

Hangzhou, exhibit the highest values for average in-degree to the slaughterhouse stage (d̄inFD), the

parameter indicating bottleneck behavior. To explore the role of this parameter on traceability in

the full dataset, in Figure 11 we plot NTE as a function of the average in-degree to the slaughter-

house stage. The observed positive correlation suggests that bottlenecks are an important factor

in determining traceability. This follows our expectations, since when many farms supply a single

slaughterhouse it becomes difficult to distinguish between them at this bottleneck to identify the

culprit of an outbreak. This finding suggests that an effective means of improving traceability would

be to decrease the number of links into the distribution stage. However, system-level changes such

as increasing the number of slaughterhouses or decreasing the number of links into each existing

slaughterhouse might not be feasible or even desirable. Strategies might also be imagined to achieve

an “effective” increase in the number of slaughterhouses or decrease in the number of links through

operational changes. One possible strategy would be to compartmentalize the slaughterhouses such
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that each facility is divided into independent sections that process product only from specific farms.

In this way, Wuxi’s two slaughterhouses (see Table 2) could be divided into 10 sub-sections, each of

which trade only with 10% of the farms. The average in-degree to the slaughterhouse stage would

become 251/20 = 12.6, which is comparable to the average in-degree of Qingdao (at 11.8), the supply

chain with the lowest entropy score. Of course with any divisions or compartmentalization, it would

be important to ensure that essential system flexibility is not lost; this could be verified by designing

divisions such that each division is self-sufficient in production and demand of product.

This discussion and any supply chain design changes mentioned are only suggestive. Before im-

plementing any policy or operational changes a full study would be necessary to investigate (i) which

structural variables have the greatest influence on traceability, (ii) what combination of parameter

values for these variables optimally facilitate traceability, and (iii) what changes could feasibly be

implemented to a systemic supply chain network. Nonetheless, the results discussed here present the

first steps into the development of a quantified study of how network parameters affect traceability,

and consequently, how this knowledge can inform the design or redesign of network structure.
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Figure 11: Traceability Entropy as a function of the average in-degree (d̄inFD) from farms to slaugh-

terhouses for the 10 case study networks, for (a) one report of illness and (b) two reports of illness.

6 Conclusions and Discussion

While significant work has focused on understanding the role of network structure on propagation

dynamics, its impact on traceability, or the ability to identify the propagation source, has received

much less attention. In this paper we propose a novel quantity, Network Traceability Entropy (NTE,
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Eλ), to measure the ability of a network structure to support accurate source identification. This

measure calculates the information-theoretic entropy of the posterior probability distribution for

the source location resulting from implementing a network source identification inference algorithm.

NTE is comprehensive and efficient: by summarizing information about the full posterior probability

distribution over feasible sources into a single score, this measure presents an improvement over the

existing simulation-based predictive accuracy metric that is based on a single binary outcome or single

rank value, while being just as convenient. Illustrative examples have been provided to demonstrate

this improvement.

Our work provides the first study systematically evaluating the role of network structural param-

eters on the ability to identify outbreak sources. Using food supply chain networks as an example

and varying a range of topological properties, we use NTE as a tool to compare the traceability of

various network configurations. This study yields three main observations. First, we have seen that

traceability will be higher if a network is less densely connected, or if the degree distributions are

more heterogeneous. These results, which demonstrate expected behavior of traceability in response

to changes in network structure, serve as an initial validation of NTE as an appropriate measure of

network traceability.

Second, analysis of the impact on traceability of the amount of “centralization” or “regionaliza-

tion” in food supply network community structures reveals interesting findings. On the whole, supply

networks with high centralization exhibit lower traceability than structures with high regionalization

connections. However decreasing the number of cross-regional connections in favor of increasing intra-

regional connections will improve traceability only to a point, above which it will drop dramatically.

This result suggests there exists an optimal tradeoff, an observation with important implications in

the context of ongoing trends in global and local food market development.

Third, we find that the initial volumes of food produced, or the prior distribution over feasible

sources, does not bias NTE results. This result implies that network structure itself dominates the

determination of traceability, highlighting the importance and feasibility of applying this universal

measure to quantify, compare, and optimize networks with various topology.

The case study reiterates the results from the stylized network analysis, emphasizing the impact

of network density, and in particular, the important role played by bottleneck nodes in limiting

traceability. Moreover, the large variability in traceability scores observed across the 10 real supply

chain networks studied, indicating accordingly varied likelihoods of successful source identification in

the event of an outbreak, highlights relevant information for public health emergency preparedness.

With the powerful ability to diagnose and compare the traceability of various networked settings,

this tool has important implications for both policy and managerial decision makers. For example

in the context of food distribution, policy decision makers, e.g. the FDA and local health depart-

ments, emergency preparedness officials, and other risk assessment bodies in charge of providing

public health monitoring, might be interested in proactively computing and comparing the traceabil-
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ity scores of the aggregated supply chains for various food products in order to identify high-risk and

therefore high-priority items. Highly centralized or highly regionalized supply chains might receive

special focus. For supply chains posing a greater risk, resources might be allocated to monitor these

items more closely or to insert more preventative controls. For example, the 2011 Food Safety Mod-

ernization Act (FSMA) now requires the identification of high-risk foods, monitoring these products

with additional recordkeeping requirements [51, 52]. The NTE metric could contribute to deter-

mining this high-risk product set. Companies with high traceability scores might be exempted from

specific requirements, or be rewarded for increasing their traceability score. For managerial decision

makers responsible for a company’s logistics operations, the traceability metric could be used to

diagnose the traceability of existing or proposed supply structures. The results might inform design

or redesign of these structures, e.g. diversifying the supply to decrease the number of connections

into bottleneck facilities. As suggested in the case study, the traceability score can also be used to

determine effective changes to operations that do not require any structural or market changes. In

other network and problem contexts, this tool can be used to similarly diagnose high-risk system

settings, or to inform the design of network configurations that maximize traceability.

It is important to note that a measure of network traceability is only as good as the network

data available to analyze. Access to high-quality network data is therefore the major prerequisite

and implementation challenge for any study of traceability. With the rapid expansions of big data

technologies such as RFID, Internet-of-Things, and Blockchain, full system network data is becoming

both more frequently recorded and more comprehensive. The data from the Chinese “Important

Product Traceability System” evaluated in the case study is one such example, with abundant supply

data readily available for real-time monitoring and analysis. Still, even the most comprehensive data

capture systems will be limited to regulated market data only and cannot make predictions regarding

food produced or tampered with illegally. Therefore no study results should be concluded or changes

to network structure prescribed without first addressing potential data limitations. For example,

with regard to the applications mentioned above, since it is not possible to map any live market

supply chain perfectly (as in our case study data), future work would need to be done to identify the

sensitivity of the traceability score to missing information on network structure and dynamics.

With these implementation challenges in mind, this work serves as an illustration of what can

be learned by applying NTE to high-quality network data, when available, and provides a first step

into the development of a quantified theory of the relationship between traceability and network

structure. The joint effect of various network parameters (e.g., degree distribution, density, flow

distribution, community structure, spatial structure) on network traceability opens possibilities for

traceability studies from an operational perspective. Future studies should concentrate on identifying

combinations of adaptable or flexible features that are not only important in determining traceability,

but that also can be modulated in real networks in order to inform the design or remodeling of

food supply structures. While a simplified model of outbreak propagation and source estimation
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is assumed in this paper, there is an opportunity in the future to augment the analysis here with

more comprehensive spatio-temporal probabilistic approaches for contamination source localization,

or to augment the model to consider multiple outbreak sources. Future studies may also apply the

method in a more realistic setting, such as in combination with electronic track-and-trace information

e.g. RFID data [53]. Furthermore, Network Traceability Entropy can be extended to many other

network problem settings involving transmission processes, such as identifying the source of defective

or counterfeit parts in manufacturing supply chains, disease contagion, virus infection, or rumors

spreading in social media.
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[20] Marc Barthélemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro Vespignani. Dynam-

ical patterns of epidemic outbreaks in complex heterogeneous networks. Journal of Theoretical

Biology, 235(2):275–288, 2005.

[21] Alain Barrat, Marc Barthlemy, and Alessandro Vespignani. Dynamical Processes on Complex

Networks. Cambridge University Press, 2008.

[22] Daniel Smilkov and Ljupco Kocarev. Influence of the network topology on epidemic spreading.

Physical Review E, 85(1):016114, 2012.

[23] Christel Kamp, Mathieu Moslonka-Lefebvre, and Samuel Alizon. Epidemic spread on weighted

networks. PLOS Computational Biology, 9(12):e1003352, 2013.

[24] F. Natale, A. Giovannini, L. Savini, D. Palma, L. Possenti, G. Fiore, and P. Calistri. Network

analysis of italian cattle trade patterns and evaluation of risks for potential disease spread.

Preventive veterinary medicine, 92(4):341–50, 2009.

[25] Paolo Bajardi, Alain Barrat, Fabrizio Natale, Lara Savini, and Vittoria Colizza. Dynamical

patterns of cattle trade movements. PLOS One, 6(5):e19869, 2011.

[26] Hartmut H. K. Lentz, Thomas Selhorst, and Igor M. Sokolov. Spread of infectious diseases in

directed and modular metapopulation networks. Physical Review E, 85:066111, 2012.

[27] B. Pinior, U. Platz, U. Ahrens, B. Petersen, F. Conraths, and T. Selhorst. The german milky

way: trade structure of the milk industry and possible consequences of a food crisis. Journal on

Chain and Network Science, 12(1):25–39, 2012.

[28] Y. Liu and L.M. Wein. Mathematically assessing the consequences of food terrorism scenarios.

Journal of Food Science, 73(7):346–353, 2008.

31



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[29] Lawrence M. Wein. OR Forum - Homeland security: From mathematical models to policy

implementation: The 2008 philip mccord morse lecture. Operations Research, 57(4):801–811,

2009.

[30] S. Lazzarini, F. R. Chaddad, and Cook. M. L. Integrating supply chain and network analysis:

The study of netchains. Journal on Chain and Network Science, 1(1):7–22, 2001.

[31] David JC MacKay and David JC Mac Kay. Information theory, inference and learning algo-

rithms. Cambridge university press, 2003.

[32] SM Dancoff and H Quastler. The information content and error rate of living things. Essays on

the Use of Information Theory in Biology, 1953.

[33] Hanser Sean F McCowan, Brenda and Laurance R Doyle. Quantitative tools for comparing

animal communication systems: information theory applied to bottlenose dolphin whistle reper-

toires. Animal behaviour, 57(2):409–419, 1999.

[34] Alfonso Delgado-Bonal and Javier Mart́ın-Torres. Human vision is determined based on infor-

mation theory. Scientific reports, 6:36038, 2016.

[35] Rob Lee, Philip Jonathan, and Pauline Ziman. Pictish symbols revealed as a written language

through application of shannon entropy. In Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, volume 466, pages 2545–2560. The Royal

Society, 2010.

[36] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of predictabil-
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