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Temporal Characteristics of the 
Chinese Aviation Network and their 
Effects on the Spread of Infectious 
Diseases
Jianhong Mou1, Chuchu Liu1, Saran Chen1, Ge Huang1 & Xin Lu1,2,3,4

Aviation transportation systems have developed rapidly in recent years and have become a focus 
for research on the modeling of epidemics. However, despite the number of studies on aggregated 
topological structures and their effects on the spread of disease, the temporal sequence of flights that 
connect different airports have not been examined. In this study, to analyze the temporal pattern of the 
Chinese Aviation Network (CAN), we obtain a time series of topological statistics through sliding the 
temporal CAN with an hourly time window. In addition, we build two types of Susceptible-Infectious 
(SI) spreading models to study the effects of linking sequence and temporal duration on the spread of 
diseases. The results reveal that the absence of links formed by flights without alternatives at dawn 
and night causes a significant decrease in the centralization of the network. The temporal sparsity 
of linking sequence slows down the spread of disease on CAN, and the duration of flights intensifies 
the sensitiveness of CAN to targeted infection. The results are of great significance for further 
understanding of the aviation network and the dynamic process, such as the propagation of delay.

Aviation transportation systems have developed rapidly in recent years1. According to the International Civil 
Aviation Organization (ICAO), the number of airlines in the world increased by approximately 30% between 
2005 and 20142. By 2014, there were 1,397 commercial air companies, 3,864 airports and 49,871 airlines serving 
nearly 3.3 billion individuals, and the number of daily flights exceeded 100,000, so that a large-scale, dynamic and 
complex aviation network (AN) had been formed. As the prevalent intercontinental and intracontinental trans-
portation system, AN affects many global issues like resource allocation3, forecasts of epidemics4, optimization of 
transportation systems5, etc.

Complex network theories have enabled us to quantify and understand the complexity and mechanisms 
behind the structure of AN6, 7. The results of an empirical analysis of the Worldwide Aviation Network (WAN) 
in 20028 illustrated that WAN was a typical scale-free small-world network. To understand the weighted features 
of WAN, a spatial weighted model was proposed by Barrat et al.9. These authors studied the correlations between 
the weighted quantities and the topology, and the effects of space on centrality, clustering and assortativity. On 
the other hand, empirical studies of domestic aviation networks (e.g., in US (USAN)10, China (CAN)11 and India 
(IAN)12) reveal that they have structural properties that are different from those of WAN, such as a two-regime 
power law degree distribution12. In addition to topological analyses, others have studied issues including key 
nodes13, 14, flight delay15–17, the vulnerability of AN18, etc. To characterize the impact of an AN on epidemics, 
Hufnagel et al.19 proposed a probabilistic model to forecast the geographical spread of a worldwide disease. In 
a more recent study, Brockmann and Helbing20 successfully identified the spatial origins of the 2009 H1N1 and 
2003 SARS epidemics using a passenger-flux motived distance. In addition, to reduce the contamination of dis-
ease with minimum interference with trade and travel, as International Health Regulations (IHR)21 calling for, 
screening of passengers in the airports involving outbreaks may play a critical role in hindering the spread of 
epidemics, especially during the incubation period22–25. Besides, efforts should be concentrated on travelers who 
are capable of effectively restraining the spread26 and international cooperations are essential to reduce global 
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transmission27. Nevertheless, spreading models on static networks would produce exaggerated infection rates 
because it may result in large overestimation of the temporal duration of links and underestimation of distances 
between pairs of nodes28, 29; this has inspired recent studies on the impact of temporal patterns on network 
dynamics30–32.

However, it is not yet clear how the temporal structure of flights in an AN can change previous conclusions on 
the propagation process when the network is analyzed aggregately. To fill in this gap, in this study, we extract the 
duration and the temporal sequences of Chinese domestic flights, analyze CAN using a temporal approach30, 33 
and run a Susceptible-Infectious (SI) disease spreading model34 to understand its time-respecting characteristics. 
We compare these measures to understand how the temporal information about the network complements the 
empirical evidence, and we show a temporal version of CAN. As the topological structure of CAN changes over 
time, an infectious individual can only infect its neighbors at a certain time, i.e., when they are connected. This 
mechanism is responsible for the slowing down of the transmission and is verified in our simulations.

Results
Static characteristics of topology. Our analysis involves a dataset for CAN in 2014, retrieved from the 
OK Traveling website35 which provides a complete list of all domestic flights information. The data comprises 
N = 183 airports as nodes and L = 14,268 scheduled flights as temporal links that connect pairs of airports. By 
aggregating the links on each route, we construct a static version of CAN with E = 1,627 weighted edges. As the 
first step, we investigate the degree distribution, Pk, which describes the probability of an airport having k con-
nections. The static CAN in this study reveals a scale-free behavior with a two-regime power law divided at k*,
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with α = −0.557(−0.610, −0.504), β = −2.408(−2.529, −2.289) under 95% confidence interval and k* = 30. 
At the same time, CAN shows small-world features with strengthened clustering (average clustering coefficient 
<C> = 0.73), short shortest path (average length <l> = 2.06) and more neighbors (average degree <k> = 17.8). 
From Table 1, in comparison to CANs described in 2005 and 2010, we can see that as a consequence of the 
increased network density, the current CAN has a higher average degree and clustering coefficient, and shorter 
average shortest path lengths. The addition of new airports with minor flights connecting hub airports may 
explain the distinction, and this also induces the increased heterogeneity among nodes observed from the 
decreasing exponents of the degree distribution.

Distribution and dynamics of flights. The sequence of flights and the duration of each flight make it 
possible for us to investigate the temporal characteristics of CAN. In this study, we represent the temporal CAN 
during a day by quadruplets ( )i j t t, , ,ij

s
ij
e  which describe where and when each flight starts and ends (see Methods). 
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s  if a < b, where n is the total number of flights on that edge. In addition, since we assume that edges 

establish when the flights on it start until the time the flights end, edges may be overlapped because of the dura-
tion of flights: flights on the same edge starting at different times may be present simultaneously at some times, 
and this can be illustrated as weights on edges during that time. We analyze the temporal characteristics of CAN 
by sliding CAN with an hourly time window. Each slice of CAN is represented as an aggregated sub-network as 
Fig. 1 shown.

We start analyzing the temporal traveling pattern by calculating the change in the number of flights (Nf). As 
shown in Fig. 2A, the number starts from zero at 6:00, increases dramatically during the following three hours, 
and peaks at 13:00. It continues at high level until 18:00, then there is a relatively slight decrease and the number 
returns to zero from 3:00 to 6:00 as there are no flights during this time. 88.37% of all flights take place between 
10:00 and midnight, and the peak hours are from 10:00 to 18:00, when 59.22% of all flights occur. These observa-
tions confirm our claim that the pattern of inter-city travel by air differs from that for daily commuting within a 
city by bus or car. The former has one long peak period, while the latter shows two obvious peaks at commuting 
times38.

The spatial variation and the evolution of connectivity for CAN are illustrated in Fig. 1. As we can see, the 
aggregated sub-network from 6:00 to 7:00 displays low connectivity and a sparsity of spatial distribution. Flights 
during this period are usually long-distance trips that take a long time (e.g. from Beijing to Urumqi) and con-
nect airports with high travel demand (e.g. Beijing and Shenzhen). Shortly after the rapid increase in flights at 

N/E Pk <k> C <l>

Liu et al.36 121/1378
k* = 20, 
α = −0.530, 
β = −2.050

11.38 0.75 2.26

Zeng et al.37 161/1185
k* = 29, 
α = −0.408, 
β = −2.166

14.72 0.70 2.14

This study 
(2014) 183/1627

k* = 30, 
α = −0.557, 
β = −2.408

17.80 0.73 2.06

Table 1. Comparison of topological characteristics of static CAN.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 1275  | DOI:10.1038/s41598-017-01380-5

noon, CAN experiences an impressive growth in the number of flights, resulting in high connectivity and spatial 
density, which can be explained from the perspective of the emergence of new links (especially those connecting 
remote cities) driven by the rapid rise in demand for air travel. After 18:00, most passengers have finished their 
journeys, reducing the demand for travel and relieving the transport pressure at many airports. In addition, sev-
eral airports become silent before 18:00; this is especially true for airports located in sparsely-populated cities, 
such as Nagri Gunsa Airport, or those located in the neighbouring cities as hub airports, such as Chizhou Airport, 
which are used to ease the pressure on the hub at peak times. At the end of the day (at midnight), airports serving 
long-distance journeys are waiting for flights to land, thus contributing to the relatively higher connectivity at this 
time than at 6:00.

Temporal characteristics of topology. Centrality is a common measure for identifying important nodes 
within a network. The centralization of an entire network is usually defined as the average of the nodal centrality. 
For example, the average degree centrality <k> shows the average number of connections involved at a node, the 
average betweenness centrality <b> indicates the average frequency at which a node is traversed by the shortest 
paths, and the average clustering coefficient <C> measures the average probability that “your friends’ friends 
are your friends”, or the ratio of triangles within the network from the perspective of topology. The time series 
of these measurements of centrality during the 24 sub-networks, which are presented in Fig. 2B–D, enable us 
to analyze the temporal characteristics of CAN. We can see that all of these measurements show a peak and an 
off-peak pattern which is similar to that observed for Nf. Nevertheless, the growth during the dawn hours Pdawn 
(6:00 to 9:00) and the drop during the night hours Pnight (22:00 to 3:00) are both at a faster rate, which implies that 
the small addition of flights during Pdawn may result in a significant increase in the centralization of CAN and the 
reduction of flights during Pnight leads to a significant decline. Most flights during these periods are indispensable 
connections between pairs of nodes, and thus the changes for the connecting edges may have a great influence 
on the connectivity. In addition, the influence of the number of flights on topological statistics are different. The 
clustering coefficient decreases faster than that of degree and betweenness due to the reduction of flights.

As the average value is susceptible to extremes and skewed data distributions, we analyze the alteration of 
distribution functions that display the overall characteristics of the network. As mentioned before, the cumulative 
degree distribution of CAN follows a two-regime power law with parameters (see Formula 1) α and β, while the 
cumulative distributions of betweenness and the clustering coefficient follow P(b) ~ exp(λ · b) and P(C) ~ γ · C, 
respectively39. As shown in Fig. 2E–H, all parameters fluctuate dramatically during Pdawn and Pnight because of 
the changes in essential connections. The relative stability of α, β during the remaining periods indicates that 
the majority of reductions and additions of flights occur along connections with multiple alternative flights. The 
gradual decrease of λ implies reductions in the critical edges on the shortest paths between pairs of nodes, whilst 

Figure 1. Temporal-spatial distribution of airports in CAN. Four slices of sub-network are shown. Tw 
represents the initial time of a given time window, and Δt denotes the length of the time window. The map 
is obtained from OpenStreetMap.org under the Open Data Commons Open Database License (ODbL), and 
visualized with ArcGIS 10.0 (http://www.esri.com/).

http://OpenStreetMap.org
http://www.esri.com/
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the cyclical change of γ illustrates that flights from or to airports with few connections, which are essential in 
enhancing the connectivity of CAN, are usually scheduled periodically.

Empirical studies on the static CAN have shown that high betweenness centrality for a node is usually associ-
ated with high degree, and that large clustering coefficient is usually associated with low degree40. However, such 
correlations may be different qualitatively and quantitatively when we consider the temporal effect of links. As 
shown in Fig. 2I–K, the relationship between degree and betweenness stays constant at about 0.8 during most 
intervals, but is higher during Pdawn and Pnight. The missing connections between locally-dominant airports in 
sparsely-populated districts and their subordinate airports may explain the high correlation. Airports with large 
betweenness but small degree on the aggregated version of the network, such as Urumqi, are usually central cit-
ies of remote districts and they form bridges connecting the local centers with political centers (e.g. Beijing) or 
economic centers (e.g. Shanghai). Interestingly, the clustering coefficient is positively related to the degree during 
Pdawn and Pnight, because airports operating during these periods usually serve individuals with high travel demand 
and most connections during that time are established among them. In the other intervals, possible connections 
among airports increase faster than the actual connections, and thus the degree climbs but the clustering coeffi-
cient decreases. In addition, the negative relationships between degree and clustering coefficient and betweenness 
and clustering coefficient show a rapidly increasing trend followed by a decreasing trend. The absence of small 
airports and the consequence that there are few links may be responsible for the subsequent decline.

Classification of nodes based on burstiness. The dynamic behavior pattern of a temporal network can 
be quantified by burstiness, which is a measurement describing the phenomenon of a large number of events 
occurring in a short time and usually being followed by a long temporal gap before the next event. Burstiness is 
usually related to the standard deviation (σ) and the mean (μ) of the waiting time (see Methods) between consec-
utive events on the same airport41. To show the heterogeneity between nodes in terms of the behavior pattern, we 
classify the airports through a density-based clustering method, DBSCAN, with the radius eps = 50 and the mini-
mum points within the radius required to form a cluster Minpts = 40 (see Methods). As shown in Fig. 3A, airports 
are classified into three categories. We characterize category one as “periodic”, as the distribution of waiting time 
can be expressed by several horizontal lines because there are only a few flights occurring at fixed time; category 
two as “sparse”, as we can fit the distribution of waiting time with a two-regime power law because of the several 
flights occurring with a long temporal gap (100 minutes or more); category three as “intensive”, as the distribution 
of waiting time can be fitted by a power law since there are a large number of flights and the gaps between flights 
are short (60 minutes or less).

Figure 2. Temporal properties of the topology of CAN. 95% confidence interval are shown from (E) to (K). (A) 
Temporal property of the dynamics of flights. (B–D) Temporal properties of the averages of statistics. (E–H) 
Temporal properties of the distribution functions. λ and γ are parameters for the distributions of betweenness 
and the clustering coefficient, respectively, and α and β are parameters for the two-regime power law degree 
distribution. (I–K) Temporal properties of correlations between degree k, betweenness centrality b and 
clustering coefficient C. Corr(x, y) denotes the correlation between x and y.
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Airports in different categories are identified in Fig. 3B, with Hongqiao Airport in Shanghai being the center, 
where the radius denotes the gap between the GDP of Shanghai (the richest city in China) and other cities. The 
map supports the assumption that the economy of neighbouring city (e.g., GDP) may be one of the dominant fac-
tors for the temporal characteristics of airports. As shown in Fig. 3B, the “intensive” cities mostly have high GDP, 
but airports in rich cities may be far from “intensive” if they are coexistent with the hub airport in this city. For 
example, Wanzhou, Qianjiang and Jiangbei airport in Chongqing playing different local roles show distinct tem-
poral characteristics, thus belonging to two different categories. The spatial distribution of these categories (see 
Fig. 3C) illustrates that “intensive” airports are mainly located in coastal and capital cities where travel demand 
is rising quickly; the “sparse” airports are widely distributed and are mainly concentrated in the north-eastern 
and middle parts of China which are fiscally subordinate to the “intensive” cities; and the “periodic” airports are 
mainly located in the fiscally relatively poor cities as well as cities in between “intensive” and “sparse” airports.

Spread of disease on temporal CAN. Studies on static networks claim that the network structure affects 
the speed and the reach of spreading through features34 like the degree distribution42, short path lengths43, or 
community44. However, recent studies31, 32 have shown that the sequential pattern of contacts plays a crucial 
role in spreading, and that biases may be introduced if temporal networks are treated aggregately when analyz-
ing spreading dynamics. In Fig. 4, we show the distribution of the generation time on nodes (the temporal gap 
between the arrival and subsequent departure from the same airport) and the delay time on edges (the duration 
of flights) (see Methods). As we can see, there is a large gap in the generation time of approximately 100 minutes 
because of the silence of CAN between 3:00 and 6:00. Nevertheless, the distribution of the generation time follows 

Figure 3. Airport classification based on burstiness. (A) Clustering based on the standard deviation (σ) and 
the mean (μ) of the waiting time between consecutive flights. Examples for each class are shown in the insets–
Chengdu Shuangliu Airport for category one, Daqing Saertu Airport for category two and Kuqa Airport for 
category three. (B) Distribution of airports using a chart based on the GDP of the relevant cities. The center 
represents Hongqiao Airport and the radius denotes the gap between the GDP of Shanghai (the richest city 
in China) and other cities. (C) Spatial distribution of airports by category (mainland in China). The map is 
obtained from OpenStreetMap.org under the Open Data Commons Open Database License (ODbL), and 
visualized with ArcGIS 10.0 (http://www.esri.com/).

Figure 4. Distribution of generation time on nodes and delay time on edges within CAN. (A) Distribution of 
generation time on nodes. The distribution after 6:00 is shown in the inset. (B) Distribution of delay time on 
edges.

http://OpenStreetMap.org
http://www.esri.com/
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a power law if we ignore the sub-networks before 6:00 (the mechanism we adopted for the Susceptible-Infectious 
spreading model). In addition, the delay time on edges follows an exponential distribution.

To understand the effects of generation time and delay time on spreading within CAN, we introduce two kinds 
of airport-oriented SI spreading model: the asynchronous SI spreading model (ASSI) and the synchronous SI 
spreading model (SSI). Nodes within both models belong to either susceptible (S) or infectious (I), and S may 
with probability α be infected by its infectious neighbors (see Methods). However, the time when the infection 
completes and the duration of status of nodes are different. Events (flights) within ASSI are represented as a 
sequence of triples ( )i j t, , ij

e  by considering the temporal delay of completion of infection. The infection in ASSI is 
completed at the time when the flight lands ( )tij

e  and the susceptible node will be infected if its neighbours are 
infectious at tij

e. On the other hand, events on SSI are treated as a sequence of quadruplets ( )i j t t, , ,ij
s

ij
e , ignoring the 

temporal delay caused by the delay time on edges. The infection in SSI is completed when the flight starts ( )tij
s  and 

the status of nodes continues until the flight ends ( )tij
e , and the susceptible node will be infected if its neighbours 

are ever infectious during ( )tij
s  and ( )tij

e . We can see that ASSI is able to simulate the process of infection with tem-
poral duration, such as the propagation of worldwide diseases among cities, while SSI is a man-made comparative 
model without any representations in reality to study the effect on spreading of the delay time on edges. In the 
following, we run these models together with classical aggregated SI spreading model (ASI) by setting α = 0.5.

As shown in Fig. 5, spreading of ASSI and SSI is much slower than that in ASI no matter where it originates, 
illustrating that the generation time on nodes is the main contributor to the slowing down of the spread, which 
echoes the conclusion in previous study32. Besides, propagation starts much later in SSI and ASSI than that in ASI, 
showing that temporal sequence of links between airports inhibits the outbreak of spreading, while the temporal 
gap between outbreaks in ASSI and SSI is a consequence of the lack of delay time on edges. In addition, not all 
nodes will be infected at the end of a day within ASSI because flights involving susceptible airports at that time 
complete at the next day. Moreover, by changing the infection sources, we find that propagation originating from 
airports with the largest degree (targeted infection) is faster than that from random nodes (random infection) for 
all SI spreading models on CAN, while targeted infection within ASSI enhances the speed and reach of spreading 
(see Fig. 5B), which is never examined before. This difference supports the claim that the duration on edges makes 
the temporal network more sensitive to targeted infection.

Discussion
In summary, using the Chinese Aviation Network (CAN) data in 2014, we find that the aggregated CAN in this 
study is more significant in terms of scale-free and small-world properties than CANs used in previous studies. 
The traveling pattern between cities, as reflected by the flights, is slightly different from the patterns for traveling 
by other means within metropolitan cities38, with a longer duration of peak hours. In the past, researchers37 have 
shown a negative correlation between degree and clustering coefficient within CAN. However, when we take 
temporal sequence of flights into account, a positive correlation of these two indices is discovered for the time 
interval between 22:00 and 2:00 on the next day. In addition, flights during the emergence of CAN (from 6:00 to 
9:00) and at night (22:00 to 3:00) may result in a significant decrease in the centralization of the network, because 
most of them are essential connections between airports. The temporal characteristics of an airport are mainly 
relevant to the economy of the neighbouring city and to the role it plays in air transportation within this city. 
Interestingly, the temporal sparsity of the generation time slows down the spread on CAN, while the duration of 
flights enhances the sensitiveness of CAN to the targeted infection.

The above findings not only reveal specific topological and temporal structural pattern for CAN, but also pro-
vide insights for the study of other local or global aviation networks. Although it might be different for network 

Figure 5. Comparison of propagation patterns within different SI spreading models on CAN. (A) Spreading 
pattern in ASI. ASIt(t) and ASIr(t) denote the ratios of infected nodes in ASI at time t in the case of targeted 
and random infections, respectively. (B) Spreading patterns in ASSI and SSI. SSIt(t), SSIr(t), ASSIt(t), ASSIr(t) 
denote the ratios of the infected nodes in SSI and ASSI at time t in the case of targeted and random infections, 
respectively.
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structure and temporal characteristics of airports, such as temporal-spatial distribution of airports, temporal 
properties of the topology, etc. Nevertheless, comparing with WAN where some airports are always in daylight 
due to the rotation of the earth, conclusions irrelevant to the temporal span may be similar, e.g., the dominant 
role of GDP of belonging cities in shaping the temporal pattern of airports, the slower spreading on temporal net-
works than that on static networks, etc. For other local aviation networks, there may be more similarities includ-
ing the characteristics of the sequence of sub-networks in one day, the shift from negative to positive correlation 
between clustering coefficient and degree, etc.

The research about temporal networks is a new and booming field30, and existing works mainly concern the-
oretical developments45–47. Our study is not only an important supplement to the analysis of static aviation net-
works, but also a successful application of temporal network theory to uncover the general spreading patterns on 
modern infrastructure systems. The results are therefore crucial for further understanding of aviation networks 
and the dynamic processes affected by them, such as cascading failures for flight delays15, the movement of pop-
ulations and the spread of diseases4.

Since the continuous time on temporal CAN is discretized by the time window in the SI model, some tempo-
ral characteristics involving the whole interval such as reachability30 may be missing and that more complicated 
epidemiology models may be examined. Moreover, the effect of other temporal and topological characteristics, 
e.g., weighted degree48, optimal path of airline49, is to be investigated in further research.

Methods
Chinese Aviation Network (CAN) data. We retrieve all flight schedules within mainland in China during 
the spring and summer of 2014 from the most comprehensive flight-oriented traveling website–OK traveling 
website35. The raw data includes start and end time of each flight, depart and arrival airports, as well as geo-lo-
cations of each airport. Data are available for 1,627 domestic routes and 14,268 scheduled flights operated by 28 
airline companies in China, including Southern Airlines, Xiamen Airlines, Air China and etc. In addition, the 
data contains a few circular flights which go from A to C through B and then return to A without going through 
B. Since the circular flights are few and usually involve remote cities in China, we consider these as unidirectional 
flights in opposite directions.

The layout of CAN is generated using the longitude and latitude of each airport. We embedded the airports 
in a two dimensional space using a rectangular projection of the Earth. The edges are placed between pairs of 
airports if there is a direct flight connecting them during a given time interval.

Time Window. We represent CAN observed during a particular time interval by a contact sequence of quad-
ruplets ( )i j t t, , ,ij

s
ij
e , where i, j denote the airports and t t,ij

s
ij
e are the take-off and landing times of the flight30. In this 

study, we assume that it is not the nodes but the connections from or to them that change over time, i.e. eij(t) = 1 
if ≤ ≤t t tij

s
ij
e, otherwise eij(t) = 0. Based on this assumption, we partition the daily CAN into consecutive 

sub-networks, with each network being constructed of flights with eij(t) = 1 during that time window50. The 
sub-network contains the departing, landing and ongoing flights as following,










< ≤ + ∆

< ≤ + ∆

≤ > + ∆

T m t T m t

T m t T m t

t T m and t T m t

( ) ( )

( ) ( )

( ) ( ) (2)

w ij
s

w

w ij
e

w

ij
s

w ij
e

w

where Tw(m) represents the initial time of the m th time window, and Δt denotes the length of the time window 
or the temporal resolution of CAN and is set as Δt = 1h in this study.

Classification based on burstiness. To study the similarity and dissimilarity of airports in terms of their 
temporal characteristics, we classify them based on their behavior patterns, which can be represented by their 
burstiness–a quantitative measurement of how bursty they are, and can be defined as a function of the mean (μ) 
and standard deviation (σ) of the waiting time (Wt)51. The waiting time between two consecutive events at a given 
node, say ( )i j t t, , ,ij

s
ij
e  and i k t t( , , , )ik

s
ik
e  on node i where ≥t tik

s
ij
s, is = −W t tt ik

s
ij
s. We embedded the nodes in a two 

dimensional space using the two parameters of burstiness, and detect possible categories through Density-based 
Spatial Clustering of Applications with Noise (DBSCAN)52 which is robust to outliers. This method requires two 
priori inputs–the radius (eps) and the minimum points (MinPts) within the radius required to form a dense clus-
ter. If the number of points within the radius of an unvisited point exceeds MinPts, the unvisited point will be a 
part of the cluster which contains the point whose radius covers it, and otherwise it is noise.

SI spreading models. To begin with, we formulate the generation time on nodes (Gt) and delay time on 
edges (Dt). The generation time of two flights on nodes, say ( )i j t t, , ,ij

s
ij
e  and ( )j k t t, , ,jk

s
jk
e  on node j where >t tjk

s
ij
e, 

is = −G t tt jk
s

ij
e, while the delay time on edges, say ( )i j t t, , ,ij

s
ij
e , is defined as = −D t tt ij

e
ij
s.

To figure out the effects on spreading of generation time and delay time, we introduce two kinds of 
airport-oriented SI spreading models: the asynchronous SI spreading model (ASSI) and the synchronous SI 
spreading model (SSI). Infections in SSI complete at the moment when the flight starts and the status of nodes 
continues until the moment when the flight ends, i.e. = ≤ ≤e t t t t( ) 1,ij ij

s
ij
e from the perspective of network, 

while infections in ASSI are complete when the flight ends, i.e. =( )e t 1ij ij
e . Then, we run these models along with 

the classical aggregated SI spreading model (ASI) to evaluate and compare the difference in propagation patterns. 
In all versions of SI spreading model, nodes belong to one of two categories: susceptible (S) and infectious (I). In 
addition, S may with probability α be infected by its infectious neighbors without recovering.
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In ASSI, infections begin when flights start and complete when flights end, which means that nodes can be 
infected if their neighbours are infectious at the departure time of flights, i.e. α= ++I I St t t1ij

e
ij
e

ij
s. In SSI, infections 

complete when flights start, i.e. α= ++I I St t t1ij
s

ij
s

ij
s. In ASI, infections occur at any time, i.e. α= ++I I St t t1 . The 

fundamental cause of the difference between the process of propagation focus on the infectious rate α which is 
changeable with the connections between airports eij. In ASI, α keeps a constant since eij never change, while in 
temporal SI spreading models, it depends on the connection between airports, i.e.,

α

α






= =

=

e t
C otherwise
0 ( ) 0

(3)
ij

where C is a constant. Then, we can rewrite the propagation process as following which suits all SI spreading 
models in this study,

α




= +
= −

+

+ +

I I S
S I1 (4)

t t t

t t

1

1 1
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