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An Immunization Strategy for 
Hidden Populations
Saran Chen1 & Xin Lu1,2,3,4

Hidden populations, such as injecting drug users (IDUs), sex workers (SWs) and men who have sex 
with men (MSM), are considered at high risk of contracting and transmitting infectious diseases such 
as AIDS, gonorrhea, syphilis etc. However, public health interventions to such groups are prohibited 
due to strong privacy concerns and lack of global information, which is a necessity for traditional 
strategies such as targeted immunization and acquaintance immunization. In this study, we introduce 
an innovative intervention strategy to be used in combination with a sampling approach that is widely 
used for hidden populations, Respondent-driven Sampling (RDS). The RDS strategy is implemented 
in two steps: First, RDS is used to estimate the average degree (personal network size) and degree 
distribution of the target population with sample data. Second, a cut-off threshold is calculated and 
used to screen the respondents to be immunized. Simulations on model networks and real-world 
networks reveal that the efficiency of the RDS strategy is close to that of the targeted strategy. As 
the new strategy can be implemented with the RDS sampling process, it provides a cost-efficient and 
feasible approach for disease intervention and control for hidden populations.

Hidden or hard-to-reach populations, including IDUs, SWs and MSM, are generally considered at higher risk of 
contracting and transmitting infectious diseases such as AIDS, gonorrhea, syphilis etc.1–3, Consequently, develop-
ing efficient intervention and immunization strategies for hidden populations is crucial to prevent and control the 
spread of these sexual transmitted diseases. However, it is difficult to access them and implement interventions 
due to their strong privacy and the lack of a sampling frame.

There are a number of immunization strategies developed for general populations, such as targeted strategy4, 
random strategy5, acquaintance strategy5, and other variants6–13. These strategies can be broadly categorized as 
one of two types based on whether the population information prior (e.g., the degree, degree distribution and 
topological structure of the whole population) is required. Global strategies can efficiently immunize the influen-
tial spreaders but require the complete knowledge of all individuals4. Local strategies only need local information 
and are less efficient than global strategies in many cases5. However, the hard-to-access property of hidden popu-
lations makes these traditional strategies not applicable as there is no list of a sampling frame from which influen-
tial spreaders or initial random individuals could be selected to design immunization or intervention strategies. 
The interventions for hidden populations typically depend on agency-based services and outreach projects14, 15. 
Although many agencies or programs provide many intervention prevention services, hidden populations often 
avoid using the agency-based services or are less likely to access health care due to their stigmatization and ille-
gality16-18. For outreach projects, hired workers, such as current and former IDUs, are trained with professional 
knowledge and offer vaccinations in their communities. The basic categories are the door-to-door outreach19, 20, 
the street-based outreach15, 21 and the peer-driven outreach22, 23. It has been proven that such outreach efforts can 
slow down the transmission of epidemics14, 24, however, these methods were built from a convenience perspective 
and lacked in systematically targeting high influential individuals within the populations. Additionally, severe 
side effects of some vaccines also need a strategy for keeping the number of vaccines low.

We can see that current intervention and immunization strategy are all limited by the nature of hidden popu-
lations and lack an approach to access and target the key individuals. To overcome these limitations, in this study, 
we develop an efficient strategy, which is based on a sampling approach currently used widely for hidden popu-
lations, called respondent-driven sampling (RDS). RDS is a nonprobability and chain-referral sampling method, 
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which works like snowball sampling but uses a dual incentive mechanism to stimulate the peer-driven recruit-
ment process25. A typical RDS begins with a number of initial selected respondents called “seeds”. After the inter-
view, the seeds will be given a certain number of coupons to distribute to friends and acquaintances in their social 
networks. Individuals with a valid coupon can participate in the process and then are given the same number of 
coupons to distribute. The above recruitment process is repeated until the desired sample size is reached26. In the 
recruitment process, information about who recruits whom and the respondents’ number of contacts (degree) 
are collected. This information can be used for correction and unbiased estimation in statistical inferences27, 28. 
RDS has been adopted widely around the world for the study of hidden populations29, 30, such as IDUs in India31, 
Iran32, SWs in China33, Kenya34, and MSM in Sweden35, Panama36. In addition, this method is approved by the 
World Health Organization for the surveillance of HIV37. The applications of RDS mainly focus on estimating the 
characteristics of the targeted populations and many estimators have been deveploded38–44.

The wide application of RDS studies provides the opportunity for us to develop a feasible intervention 
approach for infectious disease prevention and control in hidden populations: with the existing experimental 
design, it is possible to identify and immunize important individuals from the RDS sample, through which we can 
develop the analytical framework for the evaluation of efficiency and effectiveness of the strategy. Specifically, the 
basic steps of the strategy are as follows. First, we estimate the average degree (personal network size) and degree 
distribution of the studied population with respondents recruited through RDS. According to the estimated aver-
age degree, we obtain the approximate immunization threshold 

gc in case of targeted immunization by approxi-
mating the targeted population’s social network with a scale-free network4. Second, in the cumulative degree 
distribution pc(k) obtained from the estimated degree distribution, we can find a ‘cut-off degree’ 

= ≤ − k k p k gmax { ( ) 1 }cut c c . Lastly, we immunize the RDS participants whose degree k ≥ kcut. In the following, 
we implement simulated RDS processes on model networks and real-world social networks to achieve large 
enough samples for the strategy to immunize the desired number of individuals. In real applications, for which 
the size of sample is most likely not large enough, we discuss and compare the efficiency of RDS strategy by 
immunizing within the existing sample.

We consider that the RDS strategy is local because the selection of an individual to be immunized does not 
require the global information from the population but only depends on the comparison between the contact 
of the current recruitment individual and the cut-off threshold kcut. In contrast to traditional local strategies, 
the immunization process utilising the RDS strategy does not require the random selection of initial indi-
viduals as part of the first step (see Fig. 1). To verify the effectiveness of the RDS strategy, we implement the 
Susceptible-Infected-Susceptible (SIS) epidemiological model on model network and real-world networks.

Our study is one of the first to develop a systematically approach for hidden population immunization and 
intervention. Additionally, the results encourage the use of the new approach against others when there is a lack of 
global knowledge about the targeted population. As the new approach can be used in combination with existing 
RDS design, it is one of the rarely efficient and practical strategy for hidden populations.

RDS recruitment Personal network
Random sampleRDS sample Immunized node

(a) (b)

(c) (d)

Figure 1. Immunization process utilising the RDS strategy with kcut = 7 and a popular local immunization 
strategy called acquaintance immunization. In the RDS strategy, (a) the immunization process begins with a 
RDS process and (b) the individuals whose degree k ≥ 7 during the RDS chain are immunized. Compared to the 
RDS strategy, (c) the acquaintance strategy needs to randomly select individuals at the beginning and then (d) 
randomly immunizes a neighbour of the selected individual.
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Results
To study the efficiency of the RDS strategy, we focused on the critical immunized fraction fc, which is the min-
imum fraction of the population required to be immunized for the eradication of epidemics, i.e., the infection’s 
prevalence (the fraction of infected nodes) ρf = 0. Smaller fc indicates higher efficiency of a strategy. Targeted 
strategy, acquaintance strategy and random strategy are implemented as well for comparison.

In simulations, we look at the infection’s prevalence (the fraction of infected nodes) ρf in the stationary regime 
(endemic state) as a function of the fraction of immunized nodes f. we first immunize f · N nodes on a network of 
size N by implementing a strategy. Then we let the infection fraction for the susceptible be 0.5 (half of the suscep-
tible nodes are infected in the network), and iterate the SIS infection process with synchronous updating4, 5, (see 
details in the last subsection of Materials and Methods). The SIS process is implemented with a fixed spreading 
rate λ = 0.25. After the system reaches the steady state, ρf in the stationary regime is obtained. Changing the value 
of f, we can obtain ρf as a function of f. Therefore, ρ= | =f fmin{ 0}c f .

The configurations of the RDS strategy in simulations are as follows. We consider the basic setting for the 
number of seeds and coupons, i.e., 1 seed and 1 coupon because the number of seeds or coupons doesn’t change 
the inclusion probability of the individuals25, 26, 45 in RDS so that the efficiency of the RDS strategy is not affected 
by the seed number or coupon number (see Supplementary Fig. S3 and Fig. S4 online). Seeds are uniformly 
selected, and coupons are randomly distributed to the recruiter’s neighbours. RDS is implemented without 
replacement and the results are averaged from 100 simulation.

Immunization in the Barabasi-Albert (BA) network. We first implemented the RDS strategy in the 
Barabasi-Albert (BA) network46. Figure 2(a) shows the error distribution of 100 estimated results of average 
degree. All the absolute errors were less than 6.67%; and 98% of the absolute errors were less than 5%. Figure 2(b) 
shows the average of 100 estimated results of degree distribution. Both results indicate that the network degree 
can be well approximated by estimates generated by the RDS estimator from the sample. Figure 2(c) shows the 
estimated cumulative degree distribution of one simulation. The corresponding estimated average degree <k> 
was 6.001. According to equation((3)), we can obtain the estimated immunization threshold = .g 0 07c . In the 
cumulative degree distribution curve, we can find the = ≤ . =k k p kmax { ( ) 0 93} 11cut c . The results of numeri-
cal simulations for spread of the epidemic in the BA network are shown in Fig. 2(d). The reduced prevalence ρf/ρ0 
(ρ0 is the infection’s prevalence without immunization)4 for targeted strategy and RDS strategy display a sharp 
drop and their efficiencies are much better than that of acquaintance strategy and random strategy. We can see 
that, in the simulated BA network, the efficiency of the RDS strategy, which immunizes nodes from the sample 
drawn from the RDS process, is almost the same as that of the targeted strategy, which requires global information 
(degree of each node) for the network. Specifically, the simulation results of the critical immunized fraction fc for 
RDS strategy and targeted strategy are very close: about 0.08 for RDS strategy and about 0.07 for targeted strategy. 
That is to say, to eradicate epidemics, the fraction of nodes that RDS strategy needs to immunize is about the same 
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Figure 2. Basic results of BA network. (a) The error distribution of estimated average degree. (b) The average of 
estimated degree distributions and the real degree distribution. (c) The cumulative degree distribution obtained 
from the estimated degree distribution of one simulation. In this simulation, the value of kcut is 11. (d) Reduced 
prevalence ρf/ρ0 from simulations of the SIS model on the BA network with random strategy, acquaintance 
strategy, targeted strategy and RDS strategy, at a fixed spreading rate λ = 0.25. The prevalence is averaged over 
100 simulations.
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as that observed for the targeted strategy, which is much less than the immunization fraction required by the 
acquaintance strategy (fc = 0.31) and the random strategy (fc = 0.9).

Immunization in real-world networks. To further verify the effectiveness of the RDS strategy, we imple-
mented the strategy with four real-world social networks (Advogato network, Brightkite network, Epinions net-
work and MSM network, see details in Materials and Methods). The averages of the cut-off degree kcut obtained 
from simulations for each network are shown in Table 1. We can see that these estimated cut-off thresholds are 
very close to the values which is obtained from the real average degree and degree distribution of a network. The 
results of numerical simulations for the epidemic spreading on the four networks are shown in Fig. 3. The results 
are similar to those obtained for the BA network. For all networks, the fc of RDS strategy is also closer to that of 
targeted strategy compared to acquaintance strategy and random strategy. Specifically, the difference in fc for the 
RDS strategy as compared to the targeted strategy was only about 0.02 for the Advogato network, 0.01 for the 
Brightkite network, 0.05 for the Epinions network and 0.06 for the MSM network. These results well illustrate that 
the efficiency of RDS strategy is similar to that of the targeted strategy and much better than that of the acquaint-
ance strategy and the random strategy in the real-world network.

RDS strategy with egocentric information. When the number of individuals we desire to immunize is 
large, the length of the RDS recruitment chain with the RDS strategy may be very long. Inspired by the conclusion 
that the RDS estimator integrated the egocentric information performs better than the others47, we can introduce 
such additional information into RDS strategy to shorten the length. The egocentric information is the data 
collected in respondents’ ego networks during RDS process, i.e, the property of the respondent’s contacts such as 
gender and the network size of the contacts. Specifically, when egocentric information about the network size of 
the respondents’ contacts is available, we can immunize the contact of the respondent if the contact has a network 
size over the threshold, i.e., ≥kcut.

Network N M <k> kcut
* a kcut

b

BA network 10000 59980 5.998 11 11.230

Advogato network 5158 78852 15.287 9 8.952

Brightkite network 58109 427712 7.36 13 13.167

Epinions network 75877 811478 10.694 5 5.260

MSM network 16082 446170 27.743 14 13.700

Table 1. Statistics of experiment networks. akcut
* is obtained from the real average degree and degree 

distribution of a network. bkcut is the average of 100 simulation results.
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Figure 3. Reduced prevalence ρf/ρ0 from simulations of the SIS model in (a) the Advogato network, (b) the 
Brightkite network, (c) the Epinions network and (d) the MSM network with random strategy, acquaintance 
strategy, targeted strategy and RDS strategy, at a fixed spreading rate λ = 0.25. The prevalence is averaged over 
100 simulations.
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As shown in Fig. 4, the length of RDS chain can be effectively shortened if egocentric information is collected. 
When immunizing all nodes whose degree k ≥ kcut, the length of RDS chain is shortened as 1/17 in Advogato net-
work, 1/13 in Brightkite network, 1/28 in Epinions network, and 1/12 in MSM network. In real implementations, 
accurate egocentric information is difficult to collect because individuals may not know their neighbours’ degree 
well. However, this method is well suited for immunization on online social networks where the neighbours’ 
degree is easy to access, such as implementing online interventions based on social platforms, controlling and 
optimizing the dissemination of information or preventing the widely spread of rumour and incorrect informa-
tion through the online networks.

Estimation for the number of immunized nodes. In the real RDS recruitment process, the sample size 
of accessible samples is limited or hard to expand. We can only use the obtained samples to implement the RDS 
immunization strategy. Therefore, we concern about the RDS strategy’s efficiency of immunizing nodes from the 
samples, i.e., whether the number of immunized nodes reaches our desire goal by implementing our strategy 
within the existing sample with limited number of respondents.

Assuming that the RDS process is done with replacement (note that this assumption is based on the fact that 
sampling without replacement creates negligible bias compared with sampling with replacement in RDS when 
sample size is small25, 26, 45), the number of initial seed is 1 and the number of distributed coupon is 1, we approxi-
mate this immunization process with n Bernoulli trials. Then the probability of immunizing w nodes in n samples 
can be obtained by:

= − −( )Pr w n
w p p( ) (1 ) ,w n w

where p is the probability of immunizing nodes whose degree k ≥ kcut in the population. Thus, the expectation of 
w:

= .E w np[ ] (1)

In RDS, the inclusion probability of a node i is proportional to its degree ki:
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where nki is the number of nodes whose degree k = ki and pd(ki) is the population degree distribution. Hence the 
inclusion probability of nodes whose degree k ≥ kcut can be obtained:
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Figure 4. The length of the RDS chain from simulations that implemented the RDS strategy with and without 
egocentric information in (a) the Advogato network, (b) the Brightkite network, (c) the Epinions network and 
(d) the MSM network. fkcut refers to the fraction of nodes whose degree k ≥ kcut. The length is averaged over 100 
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Finally, substituting equation (2) into equation (1), we can obtain the theoretical estimation of E[w] at a given 
n. To validate this conclusion, we compare the theoretical estimations and immunization simulations in the four 
real-world networks. Figure 5 shows that the theoretical estimations of E[w] are almost consistent with the sim-
ulation results when the sample size is smaller than 10 percent of the whole population. The deviations between 
them increase gradually with the sample size due to the effect of sampling without replacement.

A practical application of RDS strategy. In simulations of the model network and real-world social net-
works we implement the RDS strategy to immunize large enough number of individuals from sufficient samples 
for the eradication of epidemics. This is performed to compare the efficiency of different strategies. However, in 
the real implementation on hidden populations, it may be difficult to immunize the desired number of eligible 
individuals from the RDS samples because sample size may be limited or small, and the sample may be difficult to 
expand. Therefore, we can adopt a more practical approach: Immunize within the existing sample (such as 1000 
RDS participants) according to the participants’ ranking order of their reported degree in the sample. Under such 
setting, the results of numerical simulations for epidemic spreading among the four networks are shown in Fig. 6. 
We can see that the reduced prevalence ρf/ρ0 of such a practical RDS strategy performs similar to acquaintance 
strategy at different values of w (the number of immunized nodes) in the MSM network and better than acquaint-
ance strategy in other three networks. Although the reduction of the prevalence with this practical RDS strategy 
is much lower than with the targeted strategy when immunizing the same number of nodes, it is clear that the 
traditional strategies are less applicable for hidden populations than the proposed strategy which is combined 
with the RDS sampling process.

Discussion and Conclusion
In this study, we propose an immunization strategy based on the RDS process, which is a sampling methodology 
currently widely adopted and applied in the study of hidden populations worldwide. The proposed RDS strategy 
provides a systematical approach and overcomes difficulties for hidden population intervention and immuniza-
tion. It can be implemented along with existing RDS studies and so that makes accessing to hidden populations 
possible during the immunization process. furthermore, the simulation results indicate that its efficiency is just 
following that obtained with the targeted strategy which requires comprehensive global information for the popu-
lation, and much better than that obtained with the acquaintance strategy and random strategy for the eradication 
of epidemics.

The advantage of RDS immunization strategy for hidden populations is obvious: First, existing methodologies 
has been developed to estimate average degree and degree distribution from an RDS sample. In the study of hid-
den populations, such estimates provide crucial inferences related to global information and can be used to obtain 
the theoretical immunization threshold. Second, the immunization can be well combined with the existing RDS 
sampling process. After the sample is obtained, individuals to be intervened or immunized are chosen among the 
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sampled respondents. Such an immunization process based on RDS avoids randomly selecting initial individuals, 
which is the first step for most traditional local strategies but impractical for hidden populations. Meanwhile, RDS 
process can select key individuals with high connections more quickly than the random selection due to the fact 
that the inclusion probability of an individual in RDS is proportion to its degree25, 26; On this basis, with the use 
of the cut-off threshold kcut which is obtained from the immunization threshold of targeted immunization, the 
higher degree individuals can be immunized almost as quickly as the targeted immunization (see Supplementary 
Fig. S1 online). That’s also the reason why the efficiency of RDS strategy is closely following that obtained with 
targeted strategy, and better than that obtained with the acquaintance strategy and random strategy in the simu-
lations. Third, the advantages of RDS make immunization process more feasible and cost-effectiveness. (1) The 
incentive mechanism of RDS improves recruiting efficiency. Each pair of individuals successfully recruited in 
RDS will be both rewarded. The rewards can stimulate respondents to pass their coupons on and encourage peer 
participation. (2) The peer-driven design allows individuals received the coupon to decide for themselves whether 
to participate. This makes recruited respondents more likely to cooperate. (3) RDS implementation is an auto-
matic process. After selecting the seed, the recruitment process will continue automatically till the desired sample 
size reaches. The researchers only need to interview the respondents at fixed locations.

For the proposed strategy, the efficiency of the immunization, i.e., the critical immunized fraction fc is largely 
determined by kcut. To guarantee the credibility of the obtained kcut, reliable estimations of average degree and 
degree distribution are needed. The estimations used in this paper are considered reliable38 and the estimation 
results on BA network confirm this conclusion as well. When obtaining the value of kcut for the eradication of 
epidemics, we assume that the spreading rate λ is known when medical experts have the means to obtain λ 
before the development of vaccines and the implementation of immunization. When λ is difficult to obtain, we 
can immunize those top-ranking nodes if possible. For example, our goal is to immunize the top 10% of nodes 
as more as possible. In this case, we can also calculate the value of kcut by the percentage of top-ranking nodes we 
want to immunize (see Materials and Methods).

To conclude, the proposed RDS strategy shows great advantages on the immunization of hidden populations. 
First, it can be combined with the RDS sampling process (i.e., no extra sample selection is needed for immuni-
zation), which makes immunization and intervention on hidden populations possible and effective. Second, the 
selection criteria for individuals to be immunized is based on comparison of respondents’ degree with the esti-
mated cut-off degree kcut, i.e., calculation for global ranking of individuals are not required. Third, with only local 
information, the RDS strategy has efficiency similar to that of the targeted strategy. We believe that the proposed 
method offers a practical strategy for designing and improving of hidden population intervention programmes, 
in conjunction with current RDS sampling studies, the efficacy and cost-effectiveness of immunization could be 
improved significantly.
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Materials and Methods
Networks. The underlying networks for the study of infectious disease transmission have rarely been the 
actual physical network, due to difficulties in obtaining such data. Instead, the model networks and social contact 
networks are most often used48, 49. And it is still an open question how well the example networks used represent 
the structure of real contact networks, e.g., the efforts to model contact networks of IDUs50.

In this paper, We test the proposed RDS strategy on a Barabási-Albert model and four real social contact net-
works. The BA network is generated by the algorithm devised in ref. 46: The number of starting nodes m0 is 5 and 
the number of new links m at every time step is 3. The four real-world networks were the Advogato online social 
network51, the Brightkite online social network52, the Epinions who-trust-whom online social network53 and 
the anonymized online social MSM network41, 45, 54. When implementing the RDS, it is assumed that the social 
network of the population is undirected. Therefore, we regard all edges of the networks as undirected. In order 
to make sure each node could be recruited with simulated RDS, we obtain four experiment networks by keeping 
members of the giant connected component (GCC) from above four undirected networks. The basic statistics of 
these experiment networks are shown in Table 1.

Estimate of degree distribution and average degree. In implementing the RDS process, we collected 
the degree of each respondent in our sample. According to the sample degree distribution qd(k), the population 
degree distribution pd(k) can be estimated as38
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∑ ⋅
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Approximate solution for immunization threshold. The approximate solution for the immunization 
threshold of scale-free networks with an arbitrary connectivity exponent in the case of targeted immunization is 
ref. 4

λ−g mexp( 2/ ), (5)c

where gc is the immunization threshold, m = <k>/2 and λ is the spreading rate in the network.

Obtain the value of kcut. (1) Obtain kcut for the eradication of the epidemics. If we want that the strategy 
works approximately well to targeted immunization for the eradication of epidemics, the top ⋅g Nc  nodes should 
be immunized (

gc is the estimation from equation (5). In the cumulative degree distribution pc(k), we can find a 
cut-off degree = ≤ − k k p k gmax { ( ) 1 }cut c c . In this case, we assume that the spreading rate λ is known. (2) 
Obtain kcut for immunizing top a% of nodes. In this case, the value of λ is not needed. We can directly find a cutoff 
degree = ≤ −k k p k amax { ( ) 1 %}cut c  in the estimated cumulative degree distribution.

Immunization strategies used for comparison. Random immunization. The random immunization, 
or uniform immunization, is a very simple immunization procedure by randomly selection of individuals in a 
population. This strategy needs to immunize a very large fraction of individuals in the scale-free network in order 
to eradicate the epidemics.

Targeted immunization. The targeted immunization is a most efficient strategy based on the ranking order of 
the individuals’ number of contacts (degree). When the global information, i.e., the degree of each individual, 
is available, this degree ranking order is easily obtained and the most connected individuals are immunized in 
turn from the ranking order. Although the targeted immunization can target the influential spreaders, i.e., the 
most connected individuals, the global information are hard to gather for the general population, not to mention 
hidden populations which have strong privacy concerns.

Acquaintance immunization. In the acquaintance immunization, a certain number of individuals are randomly 
selected and then a random acquaintance of each of these individuals is selected to immunize. This strategy only 
need to know the random chosen individual and the acquaintances in his or her contact so that it overcomes 
the requirement of global information. The acquaintance immunization is impractical for hidden populations 
because the first step of this strategy, i.e., obtaining random samples, cannot be implemented on the population 
which is lack of the sampling frame.

RDS strategy. In this paper, we proposed a systematically approach for hidden population immunization called 
RDS strategy. Specifically, this strategy is consisted of the following steps. First, using the collected degree of each 
respondent recruited through RDS to estimate the degree distribution and average degree of the studied popula-
tion by equation (3) and equation (4). According to the estimated average degree, the approximate immunization 
threshold 

gc in case of targeted immunization can be obtained by equation (5). Then in the cumulative degree 
distribution pc(k) obtained from the estimated degree distribution, we can find a ‘cut-off degree’ 

= ≤ − k k p k gmax { ( ) 1 }cut c c . Lastly, the RDS participants whose degree k ≥ kcut are immunized.
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The proposed RDS strategy can be combined with the RDS sampling process and doesn’t require the random 
selection of initial individuals as part of the first step which is needed for the acquaintance immunization. Its 
selection criteria for individuals to be immunized is based on comparison of respondents’ degree with the esti-
mated cut-off degree so that it doesn’t need the calculation for global ranking of individuals which is required for 
the targeted immunization.

Simulations of epidemic spread. Several models have been proposed for studying the behaviours of epi-
demic dynamics in networks. In this paper, we focus on the standard Susceptible-Infected-Susceptible model55. In 
the SIS model, each node of the network represents an individual, and each edge is a connection through which 
the infection can spread. A node can be in one of the two states: susceptible or infected. In simulations of this 
paper, the SIS spreading processes are implemented by using synchronous updating methods. Namely, in each 
time step t, each susceptible node is infected with probability v if it is connected to one or more infected nodes. At 
the same time, all infected nodes are cured and become susceptible with probability δ. Time increases by Δt = 1, 
and the dynamical process terminates when the system reaches a steady state. The spreading rate for the epidemic 
is then defined as λ = v/δ.
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