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Poverty is one of the most important determinants of adverse health outcomes

globally, a major cause of societal instability and one of the largest causes of lost

human potential. Traditional approaches to measuring and targeting poverty

rely heavily on census data, which in most low- and middle-income countries

(LMICs) are unavailable or out-of-date. Alternate measures are needed to comp-

lement and update estimates between censuses. This study demonstrates how

public and private data sources that are commonly available for LMICs can be

used to provide novel insight into the spatial distribution of poverty. We evalu-

ate the relative value of modelling three traditional poverty measures using

aggregate data from mobile operators and widely available geospatial data.

Taken together, models combining these data sources provide the best predictive

power (highest r2 ¼ 0.78) and lowest error, but generally models employing

mobile data only yield comparable results, offering the potential to measure

poverty more frequently and at finer granularity. Stratifying models into

urban and rural areas highlights the advantage of using mobile data in urban

areas and different data in different contexts. The findings indicate the possibility

to estimate and continually monitor poverty rates at high spatial resolution in

countries with limited capacity to support traditional methods of data collection.
1. Background
In 2015, approximately 700 million people lived in extreme poverty [1]. Poverty is

a major determinant of adverse health outcomes including child mortality [2],

and contributes to population growth [3], societal instability and conflict [4].

Eradicating poverty in all its forms remains a major challenge and the first

target of the Sustainable Development Goals (SDGs) [5]. To eradicate poverty,

it is crucial that information is available on where affected people live. Such

data improve the understanding of the causes of poverty, enable improved allo-

cation of resources for poverty alleviation programmes, and are a critical
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component for monitoring poverty rates over time. The latter

issue is especially pertinent for efforts aimed at reaching the

SDGs, which need to be monitored at national and subnational

levels over the coming 15 years [5].

The definition of poverty and the measurement methods

used to identify poor persons are part of a longstanding discus-

sion in development economics [6–9]. Different approaches

exist to calculate indicators of living standards, including

the construction of unidimensional and multidimensional indi-

ces, as well as the use of monetary or non-monetary metrics.

A further discussion for living standard indices regards the

methods used to set appropriate thresholds (poverty lines)

under which a person is defined as poor [10–12]. Monetary-

based metrics identify poverty as a shortfall in consumption

(or income) and measure whether households or individuals

fall above or below a defined poverty line [13,14]. By contrast,

asset-based indicators define household welfare based on

asset ownership (e.g. refrigerator, radio or bicycle), dwelling

characteristics, and access to basic services like clean water and

electricity [15]. Moreover, poverty indicators can capture the

status of a household or individual at a given point in time, or

identify chronic versus transient poverty over time [14,16–18].

Every approach used to calculate indicators of living stan-

dards for a population has its advantages and disadvantages,

and each indicator discerns different characteristics of the

population. Consumption data can be highly noisy due to

recall error or because expenditures occurred outside the

period captured in surveys, but provide a better shorter-

term concept of poverty [19,20]. Asset-based measures have

been regarded as a better proxy for the long-term status of

households as they are thought to be more representative

of permanent income or long-term control of resources

[20–22]. The same population can be ranked quite differently

along a poverty distribution when comparing consumption

and asset-based measures and many assumptions are necess-

arily accepted in order do such comparisons. These include

assumptions that the data represent the same populations

in the same time period; that the indicators are well matched

in their wording and response options; and that the poverty

measures have a similar distribution of responses [20,23].

Furthermore, it is difficult to compare asset-based measures

to income or consumption as it is not straightforward to

link the productive potential of a household to their assets

owned; this can be particularly relevant in rural areas

where the return on physical assets can be strongly environ-

mentally related and interactions among assets may be

important [24]. These factors necessitate a flexible approach

to modelling poverty as indicators representing asset-based,

consumption-based and income-based measures are not

necessarily expected to produce similar results.

While numerous high-resolution indicators of human wel-

fare are routinely collected for populations in high-income

countries, the geographical distribution of poverty in low-

and middle-income countries (LMICs) is often uncertain [25].

Small area estimation (SAE) forms the standard approach to

produce sub-national estimates of the proportion of house-

holds in poverty. SAE uses statistical techniques to estimate

parameters for sub-populations by combining household

survey and census data to use the detail in household surveys

and the coverage of the census. Common variables between the

two are used to predict a poverty metric across the population

[26–28]. These techniques rely on the availability of census

data, which are typically collected every 10 years and often
released with a delay of one or more years, making the updat-

ing of poverty estimates challenging. Recently, there are

promising signs that novel sources of high-resolution data

can provide an accurate and up-to-date indication of living

conditions. In particular, recent work illustrates the potential

of features derived from remote sensing and geographic infor-

mation system data [29–35] (hereafter called RS data) and

mobile operator call detail records (CDRs) [36–39]. However,

the predictive power in integrating these two data sources,

and their ability to estimate different measures of poverty has

not been evaluated.

RS and CDR data capture distinct and complimentary cor-

relates of human living conditions and behaviour. For example,

RS data of physical properties, such as rainfall, temperature

and vegetation capture information related to agricultural pro-

ductivity, while distance to roads and cities reflects access to

markets and information. Similarly, monthly credit consump-

tion on mobile phones and the proportion of people in an

area using mobile phones indicate household access to finan-

cial resources, while movements of mobile phones and the

structure and geographical reach of the calling networks

of individuals may be correlated with remittance flows and

economic opportunities [39–41].

RS and CDR data are generated at different spatial scales,

which further complement each other. The CDR indicators

used in this study are derived from data aggregated at the

level of the physical cell towers to preserve the privacy of

individual subscribers. Thus, the spatial resolution of these

data is determined by tower coverage, which is larger in

rural areas and fine-scaled in urban areas. By contrast, RS

data can be relatively coarse in urban areas and only capture

physical properties of the land. As RS and CDR data are con-

tinually collected, the ability to produce accurate maps using

these data types offers the promise of ongoing subnational

monitoring required by the SDGs.

Here, we use overlapping sources of RS, CDR and traditional

survey-based data from Bangladesh to provide the first sys-

tematic evaluation of the extent to which different sources of

input data can accurately estimate three different measures of

poverty. To date, the predictive power in integrating these data

sources, and their ability to estimate different measures of

poverty, has not been evaluated. We use hierarchical Bayesian

geostatistical models (BGMs) to construct highly granular

maps of poverty for three commonly used indicators of

living standards: the Demographic and Health Surveys

(DHS) Wealth Index (WI); an indicator of household expendi-

tures (Progress out of Poverty Index, PPI) [42] and reported

household monetary income. We additionally compare our

results with previous poverty estimates for Bangladesh at

coarser and finer resolutions.
2. Material and methods
2.1. Spatial scale and data processing
All data used in this study were processed to ensure that projec-

tions, resolutions and extents matched. The spatial scale of

analysis was based on approximating the mobile tower coverage

areas using Voronoi tessellation [43] and models were built on

the scale of the Voronoi polygons (figure 1). This allowed us to

maintain the fine spatial detail in mobile phone data within

urban areas, as Voronoi polygon size, and corresponding spatial

detail, varies greatly from urban to rural areas (minimum 60 m,

http://rsif.royalsocietypublishing.org/


190
km

N

3
km

Figure 1. Spatial structure of Voronoi polygons based on the configuration of mobile phone towers in Bangladesh. The zoom window shows the spatial detail of
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maximum 5 km) as shown in the figure. All datasets were then

summarized to spatially align with these polygons. In practice,

each polygon was assigned RS and CDR values representing

the mean, sum or mode of the corresponding data. The survey

data are matched to the Voronois based on the GPS located

lat/long of PPI data, the lat/long representing the centroid of

each DHS cluster, and the home tower of each income survey

respondent. Where multiple points from the same output

(WI, PPI and income) fell within the same polygon, we used

the mean aggregated value.

2.2. Poverty data
We used three geographically referenced datasets representing

asset, consumption and income-based measures of wellbeing

in Bangladesh (see the electronic supplementary material,

figure S1 and section A.1). These data were obtained from

three sources: the 2011 Bangladesh DHS, the 2014 FII survey

[44] with data collected on the PPI (www.progressoutofpov

erty.org) and national household surveys conducted by Telenor

Group subsidiary Grameenphone (GP) between November

2013 and March 2014 collecting household income data.
The DHS WI is constructed by taking the first principal com-

ponent of a basket of household assets and housing characteristics

such as floor type and ceiling material, which explains the largest

percentage of the total variance, adjusting for differences in urban

and rural strata [45]. A final composite combined score is then

used as a WI whereby each household is assigned its correspon-

dent quintile in the distribution and each individual belonging to

the same household shares the same WI score. A higher score

implies higher socioeconomic status (range¼ 21.45 to 3.5). Here,

we used aggregated average WI scores per primary sampling

unit (PSU) for 600 PSUs (207 in urban areas and 393 in rural

areas) to estimate the mean WI of sampled populations residing

in each Voronoi polygon.

The PPI is a measurement tool built from the answers to 10

questions about a household’s characteristics and asset owner-

ship, scored to compute the likelihood the household is living

above or below a poverty line. In Bangladesh, these poverty score-

card questions were determined using data from the 2010

Household Income and Expenditure Survey (HIES) [42,46], and

used in a nationally representative survey of 6000 Bangladeshi

adults undertaken in 2014 [44]. Together with basic demographics

and access to financial services information, the 10 questions

http://www.progressoutofpoverty.org
http://www.progressoutofpoverty.org
http://rsif.royalsocietypublishing.org/
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needed to construct the PPI were collected. These data were used

to assign a poverty measure to each individual interviewed: the

likelihood they have per capita expenditure above or below a pov-

erty line. Here, we estimate the mean likelihood (range¼ 12.3–

99.7%) of populations residing in each Voronoi polygon to be

below the $2.50 a day poverty line.

Income data were obtained from two independent, sequential

household surveys run by GP. For each survey, face-to-face

interviews were conducted with 90 000 individuals, and their

corresponding household income was collected, together with

basic demographic information for each survey participant

(e.g. gender, age, profession, education) and phone usage. Respon-

dents were directly asked about income and were requested

to place themselves within pre-set income bins. Among GP

subscribers, CDRs were successfully linked to phone numbers

for 76 000 participants. Here we converted income bins to USD

(range ¼ 0–1285$) and modelled the average USD for each

Voronoi polygon.

2.3. CDR and RS data
CDR features were generated from four months of mobile phone

metadata collected between November 2013 and March 2014. GP

subscribers consented to the use of their data for the analysis. GP,

the largest mobile network operator in Bangladesh, had 48

million customers at the time of the analysis, with a network cov-

ering 99% of the population and 90% of the land area [47]. CDR

features range from metrics such as basic phone usage, top-up

patterns, and social network to metrics of user mobility and

handset usage. These features are easily made available in data

warehouses and do not rely on complex algorithms. They

include various parameters of the corresponding distributions

such as weekly or monthly median, mean and variance (see

the electronic supplementary material).

We further identified, assembled and processed 25 raster and

vector datasets into a set of RS covariates for the whole of Ban-

gladesh at a 1 km spatial resolution. These data were obtained

from existing sources and produced ad hoc for this study to

include environmental and physical metrics likely to be associ-

ated with human welfare [31,33,48–50] such as vegetation

indices, night-time lights, climatic conditions, and distance

to roads or major urban areas. A full summary of assembled

covariates is provided in the electronic supplementary material.

2.4. Covariate selection
Prior to statistical analyses, all CDR and RS covariate data were

log transformed for normality. Bivariate Pearson’s correlations

were computed for each pair of covariates to assess multicolli-

nearity, and for high correlations (r . 0.70), we eliminated

covariates that were less generalizable outside Bangladesh.

For example, population data are widely available (e.g. www.

worldpop.org.uk/) but births data may not be; similarly,

volumes of calls could be computed and compared across

countries, but charges may be country-specific.

To identify the set of predictors most suitable for modelling

the WI, PPI, and income data, we employed a model selection

stage as is common in statistical modelling [51]. For this we

used non-spatial generalized linear models (glms), implemented

via the R glmulti package [52,53], to build every possible non-

redundant model for every combination of covariates. Models

were built on a randomly selected 80% of the data to guard

against overfitting. Models were chosen using Akaike’s infor-

mation criterion (AIC), which ranks models based on goodness

of fit and complexity, while penalizing deviance [52]. A full

IC-based approach such as this allows for multi-model inference.

Where multiple glms had near-identical AIC values, we selected

the model with the fewest number of covariates. For the CDR data

only, we used forward and backward stepwise selection ( p ¼ 0.05)
prior to model selection to reduce the initial CDR inputs from 150

to 30 or less. The covariate selection process was completed for all

three poverty measures for national, urban and rural strata, and

using RS-only, CDR-only and CDR–RS datasets (27 resulting

models). This allowed us to explore differences in factors related

to urban and rural poverty, as well as to explicitly compare the abil-

ity of RS-only, CDR-only and CDR–RS datasets to predict poverty

measures. The resulting models were then used in the hierarchical

Bayesian geostatistical approach (see the electronic supplementary

material, tables S2a–c).

2.5. Prediction mapping
Using the models selected by the previous step, we employed

hierarchical Bayesian geostatistical models (BGMs) to predict

the three poverty metrics at unsampled locations across the

population. We chose BGMs as they offer several advantages

for addressing the limitations and constraints associated with

modelling geolocated survey data. These include straight-

forwardly imputing missing data, allowing for the specification

of prior distributions in model parameters and spatial covari-

ance, and estimating uncertainty in the predictions as a

distribution around each estimate [54,55].

Additionally, we needed to account for spatial autocorrelation

in the data as they are aligned to the tower locations, which are

clustered across varying spatial scales (described in §2.1 and

figure 1). BGMs can achieve this through incorporating a spatially

varying random effect. Here, the Voronoi polygons themselves

form the neighbourhood structure for this spatial random effect,

and neighbours are defined within a scaled precision matrix [56].

The matrix represents the spatially explicit processes that may

affect poverty estimates. It is passed through a graph function

in the model which assumes the neighbour relations are connec-

ted [57], that is all adjacent polygons share a boundary. This

function accounts for the spatial covariance in the data by allowing

observations to have decreasing effects on predictions that are

further away.

Here, all BGMs were implemented using integrated nested

Laplace approximations (INLA) [58], which uses an approxi-

mation for inference and avoids the computational demands,

convergence issues and mixing problems sometimes encountered

by MCMC algorithms [59]. The model is fit using R-INLA, with the

Besag model for spatial effects specified inside the function [60,61].

In the Besag model, Gaussian Markov random fields (GMRFs) are

used as priors to model spatial dependency structures and unob-

served effects. GMRFs penalize local deviation from a constant

level based on the precision parameter t, where the hyperpriors

are loggamma distributed [56]. The hyperprior distribution

governs the smoothness of the field used to estimate spatial auto-

correlation [56]. The spatial random vector x ¼ (x1, . . . ,xn) is thus

defined as

xijxi,i = j,t � N 1

ni

X
i�j

xj,
1

nit

� �
,

where ni is the number of neighbours of node i, i � j indicates that

the two nodes i and j are neighbours. The precision parameter t is

represented as

u1 ¼ log t,

where the prior is defined on u1 [60]. The geostatistical models

defined for the WI, PPI and income data were applied to produce

predictions of the each poverty metric for each Voronoi polygon as

a posterior distribution with complete modelled uncertainty

around estimates. The posterior mean and standard deviation for

each polygon were then used to generate prediction maps with

associated uncertainty (figure 2 and electronic supplementary

material, figures S2–S6). Model performance was based on out-

of-sample validation statistics calculated on a 20% test subset of

data. Pearson product-moment correlation coefficient (r) (or

http://www.worldpop.org.uk/
http://www.worldpop.org.uk/
http://rsif.royalsocietypublishing.org/
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Spearman’s rho (r) for n , 100), root-mean-square-error (RMSE),

mean absolute error (MAE) and the coefficient of determination

(r2) were calculated for all BGMs. Finally, because glms do not

incorporate prior information for model parameters, we ran each

model through INLA while excluding the random spatial effect

to obtain non-spatial Bayesian estimates and compare model fit

and performance due to the explicit spatial process.
3. Results
We find models employing a combination of CDR and RS data

generally provide an advantage over models based on either

data source alone. However, RS-only and some CDR-only

models performed nearly as well (table 1). While the combined

CDR–RS model performed well in both urban (r2 ¼ 0.78) and

rural (r2 ¼ 0.66) areas, and at the national level (r2 ¼ 0.76), the

performance of RS-only and CDR-only models was more

context-dependent. For example, PPI and income models did

not improve predictions in urban areas, but in rural areas

the RS-only models performed nearly as well for both indi-

cators. The fine spatial granularity of the resultant poverty
estimates can be shown in figure 2, which shows the predicted

distribution of poverty for all three measures. Spatially, the

models exhibit higher uncertainty where fewer data are

available, such as the peninsular areas surrounding Chittagong

in the southeast where mobile towers are sparse. We also

find that explicitly modelling the spatial covariance in the

data was critically important. This resulted in improved pre-

dictions, lower error and better measures of fit based on

cross-validation and the deviance information criteria (DIC),

a hierarchical modelling generalization of the AIC [62]

(electronic supplementary material, tables S3 and S4).

Separating estimation by urban and rural regions

further highlights the importance of different data in different

contexts (electronic supplementary material, tables S2a–c).

Night-time lights, transport time to the closest urban settle-

ment, and elevation were important nationally and in rural

models; climate variables were also important in rural areas.

Distances to roads and waterways were significant in urban

and rural strata. In general, the addition of CDR data did not

change the selection of RS covariates at any level. Top-up fea-

tures derived from recharge amounts and tower averages

http://rsif.royalsocietypublishing.org/


Table 1. Cross-validation statistics based on a random 20% test subset of
data for all Bayesian geostatistical models.

poverty metric model r2 RMSE

whole country

DHS WI CDR – RS 0.76 0.394

CDR 0.64 0.483

RS 0.74 0.413

PPI CDR – RS 0.25 57.907

CDR 0.23 58.562

RS 0.32 57.439

income CDR – RS 0.27 105.465

CDR 0.24 107.155

RS 0.22 108.682

urban

DHS WI CDR – RS 0.78 0.424

CDR 0.70 0.552

RS 0.71 0.433

PPI CDR – RS 0.00 60.128

CDR 0.03 60.935

RS 0.00 60.384

income CDR – RS 0.15 168.452

CDR 0.15 172.738

RS 0.05 176.705

rural

DHS WI CDR – RS 0.66 0.402

CDR 0.50 0.483

RS 0.62 0.427

PPI CDR – RS 0.18 57.397

CDR 0.17 57.991

RS 0.21 57.162

income CDR – RS 0.14 81.979

CDR 0.13 82.773

RS 0.23 76.527
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Figure 3. Out-of-sample observed versus predicted values for (a) DHS
WI using mobile phone and remote sensing data: r2 ¼ 0.76, n ¼ 117,
p , 0.001, RMSE ¼ 0.394; (b) progress out of Poverty Index using
remote sensing data: r2 ¼ 0.32, n ¼ 100, p , 0.001, RMSE ¼ 57.439;
and (c) income using mobile phone and remote sensing data: r2 ¼ 0.27,
n ¼ 1384, p , 0.001, RMSE ¼ 105.465.
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were significant in every model, affirming their importance in

poverty work. People predicted to be poorer top-up their

phones more frequently in small amounts. Per cent nocturnal

calls, and count and duration of SMS traffic were signifi-

cant nationally. Mobility and social network features were

important in all three strata. In urban areas, SMS traffic

was important, whereas multimedia messaging and video

attributes were key in rural areas.

Models were most successful at reconstructing the WI

to model poverty (r2 ¼ 0.76); consumption-based and

income-based poverty proved more elusive. WI models

have better fit, lower error and higher explained variance

based on out-of-sample validation (figure 3). Combined

CDR–RS data produced the best WI models and

lowest error (r2 (CDR–RS) ¼ 0.76, r2 (RS) ¼ 0.74, r2 (CDR)¼ 0.64;

RMSE (CDR– RS) ¼ 0.394, RMSE (RS) ¼ 0.413, RMSE (CDR)¼

0.483). However, for the PPI models, the best model predicting

the probability of falling below $2.50/day was the RS-only

model (figure 2b,e, r2 (RS)¼ 0.32; RMSE (RS)¼ 57.439). The
model discerns many urban areas but also predicts areas

with very low poverty likelihood and high uncertainty outside

urban areas, especially around Sylhet in the northeast. Income

predictions (figure 2c,f ) show greater variation across the

country, and the best national model was for combined

CDR–RS data (r2 (CDR– RS) ¼ 0.27, RMSE (CDR–RS) ¼ 105.465).

The resulting predictions line up well with existing

SAE estimates for Bangladesh, and with high-resolution

maps of slum areas in Dhaka. The urban CDR–

RS model has the highest explained variance for any model

(r2 (CDR – RS_urb) ¼ 0.78) and the urban CDR-only model out-

performs the national CDR-only model (r2 (CDR_urb) ¼ 0.70).

Precision and accuracy are slightly lower, but the improved

correlation highlights the advantage of using CDRs within

a diverse urban population. To explore this further, we com-

pared our WI predictions against a spatially explicit dataset

of slum areas in Dhaka [63] (figure 4). We find the mean pre-

dicted WI of slum and non-slum areas to be significantly

different, t615 ¼ 217.2, p , 0.001, predicting slum areas to

be poorer than non-slum areas.
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To compare our method to previous poverty estimates at

administrative level 3 (upazila), we used the same method-

ology at the lower spatial resolution, using the upazila

boundaries to form the random spatial effect in the model,

and covariates from the best national level model for each pov-

erty measure. We find strong correlations (r ¼ 20.91 and

20.86 for the WI; 0.99 and 0.97 for the PPI; and 20.96 and

20.94 for income, respectively, p , 0.001 for all models)

between our upazila predictions and earlier estimates of pov-

erty derived from SAE techniques based on data from the

2010 Household Income and Expenditure (HIES) survey and

2011 census [64] (figure 5). The r-values reported for WI and

income are negative at administrative level 3 because as the

proportion of people below the poverty line as estimated by

Ahmed et al. decreases, the WI value and income in USD of

the sampled population increases. That is, people who are

wealthier as estimated by the WI and income data are also

less likely to live below the poverty line according to earlier

estimates. The geostatistical method presented here thus accu-

rately maps heterogeneities at small spatial scales while

correlating well with earlier coarser estimates. All remaining

WI, PPI and income prediction maps are provided in the

electronic supplementary material.
4. Discussion
This work represents the first attempt to build predictive maps

of poverty using a combination of CDR and RS data. The

results demonstrate that CDR-only and RS-only models per-

form comparably in their ability to map poverty indicators,

and that integrating these data sources provides improvement

in predictive power and lower error. These results are promis-

ing as the CDR data here produce accurate, high-resolution

estimates in urban areas not possible using RS data alone. As

such, CDRs potentially allow for estimation of wealth at

much finer granularity—including the neighbourhood or

even the household or individual—than the current generation
of RS technologies [36]. While CDRs are proprietary data, they

are increasingly used in research, and have formed the basis for

hundreds of published articles over the past few years [65].

They also provide significant advantages in temporal granular-

ity: CDRs update in real-time versus RS data, which update far

less frequently. Although in this study we have not used

dynamic validation data, it is a clear future application for

CDRs in real-time to better comprehend the dynamic nature

of poverty.

The higher accuracy of predictions for the asset-based

WI over other poverty metrics is presumably due to several

factors. The predictive power for assets has been shown

to be higher than for consumption [35] in addition to the

aforementioned issues of survey question wording and

response options [20,23]. Further, income and consumption

can vary hugely by day, week, and can be related to changes

in household size, job loss or gain, piecework or harvest out-

comes. Assets and housing characteristics are generally

considered more stable [20–22]. For the datasets used in

this study, WI data are based on clusters of households,

and this sampling strategy provides more robust estimates

and less variability than the individually based PPI and

income data. Greater success in predicting the WI is also

presumably due to the WI measuring a wider range of

living standard across the population. That is, the full range

of distribution from poorest to wealthiest in the population

is represented in these data. Alternatively, by considering a

streamlined 10 questions, the PPI is meant to identify

the poorest individuals in a population. Similarly, in the

income data, there were very few respondents in higher

income categories.

The higher error associated with CDR-only models is not

surprising considering the noise inherent in these data. CDR

features are derived from daily and weekly measurements

aggregated over short temporal intervals, while RS covariates

are generally comprised of long-term averages or compara-

tively less dynamic measures of location and access such as

roads or proximity to urban centres. Bearing this in mind,

http://rsif.royalsocietypublishing.org/
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we find CDR data useful for estimating poverty in the

absence of ancillary datasets.

Our findings provide further support for correlations

between socio-economic measures and night-time light inten-

sity [36,48,49], access to roads and cities [50,66], entropy of

contacts [37,40] and mobility features [39]. The universal cover-

age of cell towers across Bangladesh made it possible to predict

poverty at high-resolution in both urban and rural areas.

Within urban areas, the high correlation with maps of slums

in Dhaka suggests we are capturing the poorest populations.

Even if the poorest populations are not generating call data

[36], and thus not included in the CDRs, we still see a clear

difference in WI predictions between slum and non-slum

areas using tower level CDR aggregates. This finding extends

recent work which predicted wealth and poverty at the district

level, but were unable to verify predictions at finer scales [36].
Using CDRs and RS data within BGMs to produce accurate,

high-resolution poverty maps in LMICs offers a way to comp-

lement census-based methods and provide more regular

updates. Regularly updated poverty estimates are necessary

to enable subnational monitoring of the SDGs during intercen-

sal years and are critical to ensure mobilization of resources to

end poverty in all its dimensions as set out in SDG 1. Poverty

estimates are time sensitive and become obsolete when factors

such as migration rates, infrastructure, and market integration

change [67]. Furthermore, the methods presented here offer a

workaround to estimating poverty with household survey

data, which can be time consuming and expensive to obtain.

To end poverty in all its dimensions, it is likely that

methods that exploit information from, and correlations

between, many different data sources will provide the great-

est benefit in understanding the distribution of human living

conditions. To leverage data from differing sample sizes, tem-

poral and spatial scales, BGMs provide such a rigorous

framework. This study further provides an example of how

aggregated CDR data can be processed in such a way that

detailed maps can be created without revealing sensitive

user and commercial information. As insights from CDRs

and other remote sensing data become more widely avail-

able, analysing these data at regular intervals could allow

for dynamic poverty mapping and provide the means for

operationally monitoring poverty. The combination of spatial

detail and frequent, repeated measurements may distinguish

the transitorily poor from the chronically poor, and allow for

monitoring economic shocks [68]. This offers the potential for

a fuller characterization of the spatial distribution of poverty

and provides the foundation for evidence-based strategies to

eradicate poverty. Researchers would do well to use the

additional information and granularity afforded by CDR

data with matched individual-based consumption data to

further infer novel and useful information from mobile data.
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A. Input data 

A.1. Geolocated survey data 
The growing number of georeferenced household survey data from low and middle-income 

countries allows us to explore poverty metrics and comparisons between them while explicitly 

considering their geographic distribution. In Bangladesh, we utilised three geographically 

referenced datasets representing asset, consumption, and income-based measures of wellbeing 

(Figure S1).  

A.1.1. Demographic and Health Survey Wealth Index 

The Demographic and Health Surveys (DHS) were designed primarily to collect household data on 

marriage, fertility, family planning, reproductive and child health, and HIV/AIDS in almost all lower 

income countries1. Through the assembling of indicators correlated with a household’s economic 

status (e.g. ownership of television, telephone, radio as well as variables describing type of floor 

and ceiling material and other facilities), a wealth index is calculated for each country at each time2 

based on the idea that the possession of assets and access to services and amenities are related 

to the relative economic position of the household in the country3. By its construction, the wealth 

index is a relative measure of wealth within each survey; however, a new methodology has been 

developed in order to make it comparable across countries and through time4. Moreover, recent 

adjustments have been made to the methods of constructing the wealth index to overcome 

criticism that the original score was not adequately capturing the differences between urban and 

rural poverty or identifying the poorest of the poor3. 

The wealth index is constructed using a principal component analysis (PCA), which includes a 

long list of assets owned by households as well as other indicators. (The complete list of indicators 

included in the PCAs for each survey, as well as PCA analysis and results can be found at 

http://dhsprogram.com/topics/wealth-index/Wealth-Index-Construction.cfm). The first factor from 

the PCA, capturing the largest percentage of the variance within the dataset, is derived adjusting 

for urban and rural strata3,5. In practice, a national index and two area-specific indexes 

representing urban and rural strata are individually constructed using sets of assets/services 

specific to each in order to better capture differences between urban and rural areas, and compare 

the wealth index between them3. Subsequently, applying regression techniques described in 

Rutstein3 and Rutstein6, the three indexes are combined into a single wealth distribution and a 

composite national index is derived. This method ensures comparability between urban and rural 

areas. 

Here we used the 2011 Bangladesh DHS7 (Figure S1A), a nationally representative survey based 

on a two-stage stratified sample of households, where 600 enumeration areas (EA or cluster) were 

first selected with probability proportional to the EA size, (207 clusters in urban areas and 393 in 

rural areas). This first stage of selection provided a listing of households for the second stage, 

where a systematic sample of 30 households on average was selected per cluster, to create 

statistically reliable estimates of key demographic and health variables7,8. In recent DHS surveys 

where HIV/AIDS data are not collected, geolocations for each cluster are available. The survey 

cluster coordinates represent an estimated centre of the cluster and are collected in the field 

through GPS receivers. To maintain respondents’ confidentiality, GPS positions for all clusters are 

randomly displaced by a maximum of five kilometres for rural clusters and a maximum of two 

kilometres for urban clusters9–11. 
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 A.1.2. Progress out of Poverty Index 

The Progress out of Poverty Index (PPI) (Figure S1B) was designed to be easily collected, simple 

and cost-effective to implement and verify12, while applying a rigorous methodology through 

selecting assets based on their statistical relationship with poverty12,13. In the case of Bangladesh, 

an easy-to-use poverty scorecard13 of 10 questions was created in March 2013, based on data 

from the Bangladesh 2010 Household Income and Expenditure Survey (HIES). The questions 

selected are aggregated into a score highly correlated with poverty status as measured by the 

HIES. The scores included in the scorecard are then translated into likelihoods that the household 

has per-capita expenditure above or below a given poverty line13. 

A nationally representative survey of all adults in Bangladesh was undertaken by InterMedia 

Financial Inclusion Insight Project (www.finclusion.org) in 2014 (wave 2), where 6,000 

Bangladeshi individuals aged 15 and above were interviewed14 and geolocations for each 

individual were included in the survey. In Bangladesh, InterMedia adopted a stratified sample 

strategy, whereby divisions and subdivisions were first identified and interviews within each 

subdivision were distributed in proportion to population size. In order to select the individuals to 

interview, households were first randomly selected using electoral rolls to randomly assign starting 

points in each selected subdivision. After having identified the starting point, subsequent 

households were selected using the right-hand rule, and the Kish Grid method was applied to 

select an individual respondent from each household14,15. 

 A.1.3. Market research household surveys and income data 

Two sequential large-scale market research household surveys were run by Telenor through its 

subsidiary, Grameenphone (GP), during 2 time periods between November and December 2013 

(N=82,834, of which 55.3% GP subscribers) and February and March 2014 (N=87,509, of which 

54.5% GP subscribers) (Figure S1C). The country was stratified in 226 sales territories by the 

phone company, and for every territory, an equal number of unions (in rural areas) and wards (in 

urban areas) were randomly selected. Four hundred households were surveyed in each territory, 

where a household was defined as a group of people sharing food from the same chula (fire/gas 

burner) or living under the same roof. Systematic sampling was then undertaken to select 

households by selecting every fourth household, starting from the selection of a random 

geographic point and direction within each ward or union. In the case of more than one household 

present in the complex or building, the fourth household was selected. In cases of non-response, 

the next household was then selected. Non-response rate was approximately 10% of households. 

Respondents within the household were selected via the Kish grid method15 among those who 

were eligible. Eligibility was defined as individuals with their own phone, between 15 and 65 years 

of age. If a phone was shared between family members, usually the male head of household was 

interviewed. When the selected person was not home, the surveyors returned multiple times to try 

to reach the selected person. A very low non-response rate (less than 1-2%) was detected among 

respondents. The surveys were undertaken during working hours. To avoid that too many 

housewives were interviewed, given that men are more likely away for work, a ceiling on the 

number of housewives who could participate was also established. Sampling weights were applied 

to ensure national representativeness and correct for population sizes in urban and rural areas. 

Data quality control mechanisms were implemented and undertaken by the company; however, 

some sources of error were detected in matching household locations to phone number 

(approximately 20% of the cases). 
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A.2. Mobile phone call detail records (CDRs) 
For the household income survey respondents described above, we collected 3-months of mobile 

phone metadata by subscriber consent. These metadata included call detail records (CDR) and 

top-up information, which were further processed into features. For each survey participant, 150 

features from seven different feature families were constructed (Table S1). Household income was 

then linked to these metadata, resulting in three months of phone usage, matched with household 

income for each survey respondent. To preserve user anonymity, the local operator removes all 

personally identifying information from the data before analysis. 

To be able to map poverty in other countries we focused on features that are easily reproducible, 

and easy to implement by local data warehouses. Most mobile operators generate similar 

features. CDR features range from metrics such as basic phone usage, top-up pattern, and social 

network to metrics of user mobility and handset usage. They include various parameters of the 

corresponding distributions such as weekly or monthly median, mean, and variance. In addition, 

we received pre-aggregated datasets of tower-level activity from 48,190,926 subscriber SIMs over 

a 4-month period. This includes monthly number of subscribers per home cell, where home cell 

corresponds to most frequent tower. These per-user features are not directly used, but further 

aggregated to the Voronoi polygons, and the aggregate features are used in covariate selection, 

model fitting, and prediction. 

At the time of data acquisition, the mobile phone operator had an approximate 42% market share, 

and was the largest provider of mobile telecommunication services in Bangladesh. Multi-SIM 

activity is common in Bangladesh, but we believe that this should not create a systematic bias in 

poverty estimates because the geographic coverage of the operator is so extensive. In order to 

comply with national laws and regulations of Bangladesh, and the privacy policy of the Telenor 

group, the following measures were implemented in order to preserve the privacy rights of 

Grameenphone customers:  

1) All customers are de-identified and only Telenor/Grameenphone employees have had 

access to any detailed CDR-/top-up data; 

2) The processing of detailed CDR/top-up data resulted in aggregations of the data on a 

tower-level granularity; the tower-level aggregation makes re-identification impossible. 

Hence, the resulting aggregated dataset is truly anonymous and involves no personal data. 

Compared with other countries of comparable income levels, Bangladesh has a high mobile phone 

penetration, which includes rural areas. Fifty percent of the population above the age of fifteen has 

a mobile subscription16. The proportion of households with at least one mobile phone is increasing 

rapidly; between 2011 and 2014, household ownership across the whole of Bangladesh rose from 

78% to 89%, with much of that growth concentrated among rural households17. The CDR data 

used in this study are available upon request for the replication of results only by contacting the 

corresponding author. 
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A.3. Remote Sensing-GIS covariates 
Ancillary data layers used as remote sensing-GIS (hereafter RS) covariates were identified, 

assembled, and processed for the whole of Bangladesh at a 1-km spatial resolution. These data 

are described in Table S1 and include 25 raster and vector datasets obtained from existing 

sources or produced ad hoc for this study to include environmental and physical metrics likely to 

be associated with human welfare18–22. These data differed in spatial and temporal resolution, 

type, accuracy, and coverage. In order to align all data for model fitting and prediction, the 

following steps were taken: 

1) Bangladesh was rasterized at a resolution of 30-arcsec (0.00833333 degree, 

corresponding to approximately 1-km at the equator); 

2) Vector datasets were rasterized at a resolution of 30-arcsec; 

3) When necessary, raster datasets were resampled to a resolution of 30-arcsec using an 

interpolation technique appropriate for the resolution and type of the original dataset; 

4) All datasets were spatially aligned to make every pixel representing the same location 

coincident and match the rasterized study area. 

Furthermore, for ad hoc datasets such as distance to roads and waterways, we used a customized 

Azimuthal Equidistant projection centred in the middle of the study area and clipped to a buffer 

extending 100 metres beyond its boundary to project the input data. This buffered area was 

rasterized to a resolution of approximately 927 metres, corresponding to 30-arcsec at the centre of 

the study area where distortion is smallest. Euclidean distance was calculated for each distance-to 

covariate within the customized projection. The resultant layers were then projected back to GCS 

WGS84, and made coincident with the rasterized study area. All datasets representing categorical 

variables (e.g. protected areas, global urban extent, etc.) were projected, rasterized, and/or 

resampled to 1-km resolution, spatially aligned to the rasterized study area, and converted into 

binary covariates, representing the presence or absence of a given feature. This resulted in 

twenty-five 1-km raster datasets, which were used to extract the mean, mode, or sum of each 

covariate for each Voronoi polygon, dependent on the type of dataset. These values were used for 

covariate selection, model fitting, and prediction. 

A.3.1 GPS data displacement 

In addition to the aforementioned processing, additional steps were undertaken to appropriately 

account for the displacement inherent in DHS data. When these data are collected, the latitude 

and longitude of the centre of each DHS cluster (representing numerous households) is collected 

in the field with a GPS receiver. To maintain respondents’ confidentiality, GPS latitude/longitude 

positions for all DHS clusters are randomly displaced by a maximum of five kilometres for rural 

clusters and two kilometres for urban clusters. The displacement is restricted so the points stay 

within the country, within the DHS survey region, and within the second administrative level9–11. 

In order to account for the displacement in our analyses, we created buffers around each cluster 

centroid of 2 km and 5 km for urban and rural clusters, respectively, and subsequently extracted 

the RS covariate data for each buffer zone. For continuous covariates, the minimum, maximum, 

and mean values were calculated and extracted. For categorical covariates, the modal value was 

calculated and extracted. 
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B. Statistical analyses and prediction mapping 

B.1. Covariate selection via generalized linear models 
Stratifying models into urban and rural components produced the best fit models as measured by 

AIC. Top-up data produced the most important CDR feature family for all poverty measures and 

models. Within this feature family, significant covariates included recharge amounts and 

frequencies per tower, spending speeds and time between refills, and fractions of the lowest and 

highest available top-up amounts. Advanced phone usage was also an important CDR feature 

family, especially for PPI and income models. Sum, revenue, count, and volume of ingoing and 

outgoing multimedia messaging, Internet usage, and videos were prominent. Basic phone usage 

covariates measuring incoming and outgoing text counts were important for every model save for 

rural WI models. Mobility covariates including number and entropy of places and radius of gyration 

were also significant features in all three strata and poverty measures, as were social network 

features such as number and entropy of contacts. 

Nighttime lights and covariates representing access - especially transport time to closest 

urban settlement and distance to roads - were the most important RS covariates for all three 

poverty measures and strata. Vegetation productivity, as measured by the Enhanced Vegetation 

Index (EVI), and elevation were also prominent RS features in all three strata, whereas climate 

variables featured prominently in rural models. 

B.2. Prediction mapping via Bayesian geostatistical models 
Using the models selected and described in Tables S2A-C, we employed hierarchical Bayesian 

geostatistical models (BGMs) for prediction as described in our manuscript. All prediction maps 

not highlighted in our manuscript can be found in Figures S2-S6. Model performance was based 

on out-of-sample validation statistics calculated on a 20% test subset of poverty data input points 

(see Table 1 in manuscript). The performance of models built with CDR-only or RS-only data 

varied based on poverty measure and strata. RS-only models were more successful at predicting 

the WI for all three strata (r2= 0.74, 0.71, 0.72 for national, urban, and rural models), as compared 

to CDR-only models. However, the CDR-only models performed nearly as well (r2= 0.64, 0.70, 

0.50 for national, urban, and rural models), and all urban WI models including CDRs outperformed 

national level models. The urban CDR-RS model exhibits the highest explained variance for any 

model (r2=0.78), and the urban CDR-only model outperforms the national CDR-only model 

(r2=0.70 versus r2=0.64, respectively). For PPI and income measures of poverty, CDR data 

produced the best models in urban areas, whereas RS data produced the best models in rural 

areas. This highlights the compatibility of these two datasets for predicting different measures of 

poverty at different scales, as the best estimates and lowest error corresponded to the data with 

fine-scale spatial heterogeneity (CDRs in urban areas; RS data in rural areas). To that end, 

national poverty models generally performed best when utilising both CDRs and RS data. 

To compare full model performance against a spatial interpolation model, we modelled the training 

data for all three poverty indicators using only the spatial random effect in the INLA model (see 

section 2.5 in manuscript). These results are shown in Table S3. We compared out-of-sample r2 

and RMSE values against results from the full models (see Table 1 in manuscript). The results 

show a spatial pattern in the WI data as the model built with only a spatial random effect yields an 

r2=0.49, RMSE=0.578. When compared to the full model, the addition of covariate data increases 

the r2 to 0.76, and the RMSE decreases to 0.394. Similarly for income, the data do show a slight 

spatial pattern, but the addition of covariate data to the model increases the predictive power and 
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decreases the error. For the PPI, the covariates do not show a strong influence in the modelling 

results, and the model was driven by the spatial process, which suggests there’s an underlying 

spatial covariate that we’re not capturing in the model that could explain the data. 

Model fit based on the spatial effect can also be considered using DIC, a hierarchical modelling 

generalization of the AIC and BIC, which can be useful in Bayesian modelling comparison. The 

BIC allows for comparing models using criterion based on the trade-off between the fit of the data 

to the model and the corresponding complexity of the model. Models with smaller DIC values are 

preferred over models with larger DIC values as the measure favours better fit and fewer 

parameters23. These results are shown in Table S4. For nearly every model with CDR data, DIC is 

greatly improved by accounting for the spatial covariance in the data structure. However, the 

income models see slight or no improvement from including the random spatial effect, likely due to 

the fact that they include and are thus penalised for many covariates. 
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SI Tables and Figures 

Table S1. Summary information for remote sensing-GIS and mobile phone call detail record datasets used for covariate selection and 

Bayesian geostatistical poverty mapping. 

Category Description Source 
Resolution 
(Degrees) 

Year 

RS-GIS 

Accessibility Accessibility to populated places with more than 50k 
people 

European Commission Joint Research Centre 
(http://forobs.jrc.ec.europa.eu/products/gam/) 

0.0083333 2000 

Population Population count [per pixel] WorldPop (http://www.worldpop.org.uk/) 0.0008333 2010 

Population Population count [per pixel] CIESIN - Global Rural Urban Mapping Project 
(http://sedac.ciesin.columbia.edu/data/collection/grump-v1/sets/browse) 

0.0083333 2000 

Population Population density [per sqkm] CIESIN - Global Rural Urban Mapping Project 
(http://sedac.ciesin.columbia.edu/data/collection/grump-v1/sets/browse) 

0.0083333 2000 

Climate Mean Aridity Index CGIAR-CSI (http://www.cgiar-csi.org/data) 0.0083333 1950-2000 

Climate Average annual Potential Evapotranspiration [mm] CGIAR-CSI (http://www.cgiar-csi.org/data) 0.0083333 1950-2000 

Night-time lights VIIRS night-time lights [W cm-2 sr-1] NOAA VIIRS (http://ngdc.noaa.gov/eog/viirs.html) 0.0041667 2014 

Elevation Elevation [meter] CGIAR-CSI (http://srtm.csi.cgiar.org/) 0.0083316 2008 

Vegetation Vegetation MODIS MOD13A1 [Enhanced vegetation index] 0.0041667 2010-2014 

Distance Distance to roads [meter] Input data from OSM (http://extract.bbbike.org/) 0.0083333 2014 

Distance Distance to waterways [meter] Input data from OSM (http://extract.bbbike.org/) 0.0083333 2014 

Urban/Rural Urban/Rural MODIS-based Global Urban extent 0.0041670 2000-2001 

Urban/Rural Urban/Rural CIESIN - Global Rural Urban Mapping Project 
(http://sedac.ciesin.columbia.edu/data/collection/grump-v1/sets/browse) 

0.0083333 2000 

Urban/Rural Global Human Settlement Layer Global Land Cover Facility (www.landcover.org) 0.002818 2014 

Protected Area Protected areas WDPA (http://www.protectedplanet.net/) Vector 2012 

Land Cover Land cover ESA GlobCover Project (http://due.esrin.esa.int/page_globcover.php) 0.0027777 2009 

Land Cover Land cover IGBP MODIS MCD12Q1 
(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1) 

0.0041670 2012 

Land Cover Land cover ONRL DAAC Synergetic Land Cover Product (SYNMAP) 
(http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10024_1) 

0.0083333 2000-2001 



Mapping poverty using mobile phone and satellite data 

J.E. Steele, P. Sundsoy, C. Pezzulo, V. Alegana, T. Bird, J. Blumenstock, J. Bjelland, K. Engo-Monsen, YA de Montjoye, A. Iqbal, K. Hadiuzzaman, X. Lu, E. Wetter, A.J. 

Tatem, and L. Bengtsson 

 

12 
 

Demographic Pregnancies WorldPop (http://www.worldpop.org.uk/) 0.0008333 2012 

Demographic Births WorldPop (http://www.worldpop.org.uk/) 0.0008333 2012 

Ethnicity Georeferenced ethnic groups ETH Zurich (http://www.icr.ethz.ch/data/geoepr) Vector 2014 

Climate Mean annual precipitation WorldClim (http://www.worldclim.org/download) 0.0083333 1950-2000 

Climate Mean annual temperature WorldClim (http://www.worldclim.org/download) 0.0083333 1950-2000 

Call Detail Records NA 2013-
2014 

Basic phone 
usage 

Outgoing/incoming voice duration, SMS count, etc.   Telenor/Grameenphone NA 2013-2014   

Top-up 
transactions 

Spending speed, recharge amount per transaction, 
fraction of lowest/highest recharge amount, coefficient 

of variation recharge amount, etc. 

Telenor/Grameenphone NA 2013-2014 

Location/mobility Home district/tower, radius of gyration, entropy of 
places, number of places, etc. 

Telenor/Grameenphone NA 2013-2014 

Social Network Interaction per contact, degree, entropy of contacts, 
etc. 

Telenor/Grameenphone NA 2013-2014 

Handset type Brand, manufacturer, camera enabled, 
smart/feature/basic phone, etc. 

Telenor/Grameenphone NA 2013-2014 

Revenue Charge of outgoing/incoming SMS, MMS, voice, 
video, value added services, roaming, internet, etc. 

Telenor/Grameenphone NA 2013-2014 

Advanced 
phone usage 

Internet volume/count, MMS count, video 
count/duration, value added services duration/count, 

etc. 

Telenor/Grameenphone NA 2013-2014 
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Table S2A. Wealth Index models for RS-only, CDR-only, and CDR+RS data: national, urban, and rural strata. 
AIC NATIONAL URBAN RURAL 

RS-only 690.61 333.44 161.42 

CDR-only 907.78 373.97 164.14 

CDR-RS 651.76 318.12 115.52 

MODEL 
   RS-only 1 + transport time to closest urban settlement + nighttime lights 

+ EVI + elevation 
1 + distance to roads + distance to waterways + nighttime lights + 

elevation 
1 + transport time to closest urban settlement + annual 

temperature + annual precipitation + distance to roads + distance 
to waterways + nighttime lights 

CDR-only 1 + recharge average per tower + percent nocturnal calls + 
number of places + entropy of contacts + outgoing internet 

sessions +  sum outgoing internet sessions + incoming voice 
duration + count incoming content management system + 

count sum incoming content management system + volume of 
incoming multimedia messages + recharge amount per 

transaction + count incoming multimedia messages + count 
incoming texts + weekly recharge amount 

1 + recharge average per tower + number of places + entropy of 
contacts + spending speed + average outgoing text count + sum 
count incoming content management system + weekly recharge 

amount 

1 + recharge average per tower + percent nocturnal calls + 
entropy of places + radius of gyration + interactions per contact + 
recharge amount (CV) + number of retailers visited weekly (CV) + 

sum incoming video duration + count incoming multimedia 
messages + weekly recharge frequency (CV) + sum incoming 

video count + recharge amount per transaction (CV) 

CDR-RS 

1 + transport time to closest urban settlement + nighttime lights 
+ EVI + elevation + recharge average per tower + percent 

nocturnal calls + outgoing internet sessions + count incoming 
content management system + recharge amount per 

transaction + count incoming texts + weekly recharge amount 

1 + distance to roads + distance to waterways + nighttime lights + 
elevation + recharge average per tower + spending speed + 

average outgoing text count + weekly recharge amount 

1 + transport time to closest urban settlement + annual 
temperature + distance to roads + distance to waterways + 

nighttime lights + recharge average per tower + percent nocturnal 
calls + entropy of places + radius of gyration + interactions per 
contact + recharge amount (CV) + number of retailers visited 

weekly (CV) + sum incoming video duration + weekly recharge 
frequency (CV) + sum incoming video count + recharge amount 

per transaction (CV) 

*CV=coefficient of variation 
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Table S2B. Progress out of Poverty Index models for RS-only, CDR-only, and CDR+RS data: national, urban, and rural strata. 

AIC NATIONAL URBAN RURAL 

RS-only 41676 14099 27465 

CDR-only 41562 14044 27421 

CDR-RS 41502 14043 27382 

MODEL 

   RS-only 1 + annual precipitation + annual temperature + transport time 
to closest urban settlement + distance to roads + EVI + 

nighttime lights 

1 + annual precipitation + annual temperature + transport time to 
closest urban settlement + elevation 

1 + annual precipitation + annual temperature + transport time to 
closest urban settlement + distance to water + EVI + nighttime 

lights 

CDR-only 
1 + subscribers per tower + recharge average per tower + 

entropy of places + entropy of contacts + average outgoing text 
count + sum outgoing multimedia messages + fraction of 10 
Thaka top-ups (min amount) + outgoing internet sessions + 

sum outgoing internet sessions + sum count incoming content 
management system + number of retailers visited weekly (CV) 

+ sum revenue outgoing multimedia messages + spending 
speed variance + count incoming multimedia messages + sum 
count incoming multimedia messages + count incoming texts + 
sum count incoming texts + weekly recharge frequency (CV) + 
median time between refills + incoming video count + outgoing 

internet volume + time variable (CV) 

1 + subscribers per tower + recharge average per tower + sum 
outgoing multimedia messages + count outgoing internet sessions 

+ sum count outgoing internet sessions + number of retailers 
visited weekly (CV) + volume of incoming multimedia messages + 

outgoing text charges + sum revenue outgoing multimedia 
messages + incoming video duration + sum incoming video 
duration + spending speed variance + sum count incoming 

multimedia messages + weekly recharge amount + incoming 
video count + sum incoming video count + number of retailers 

visited weekly 

1 + subscribers per tower + recharge average per tower + number 
of places + entropy of places + sum duration outgoing value 

added services + count outgoing texts + sum count outgoing texts 
+ sum volume of outgoing multimedia messaging + fraction of 300 

Thaka top-ups + count outgoing internet sessions + sum count 
outgoing internet sessions + incoming voice duration + number of 

retailers visited weekly (CV) + volume of incoming multimedia 
messages + outgoing text charges + sum outgoing text charges + 
sum revenue outgoing multimedia messages + spending speed 
variance +  count incoming texts + sum count incoming texts + 

weekly recharge frequency (CV) + median time between refills + 
outgoing internet volume + recharge amount per transaction (CV) 

+ time variable (CV) 

CDR-RS 1 + annual precipitation + annual temperature + transport time 
to closest urban settlement + distance to road + elevation + 

subscribers per tower + recharge average per tower + entropy 
of places + entropy of contacts + average outgoing text count + 

sum outgoing multimedia messages + outgoing internet 
sessions + sum outgoing internet sessions + number of 
retailers visited weekly (CV) + sum revenue outgoing 

multimedia messages + spending speed variance + count 
incoming multimedia messages + sum count incoming 

multimedia messages + count incoming texts + sum count 
incoming texts + weekly recharge frequency (CV) + median 

time between refills + incoming video count + outgoing internet 
volume + time variable (CV) 

1 + annual precipitation + annual temperature + EVI + elevation + 
subscribers per tower + recharge average per tower + sum 
outgoing multimedia messages + number of retailers visited 

weekly (CV) + volume of incoming multimedia messages + sum 
volume of incoming multimedia messages + incoming video 

duration + sum incoming video duration + sum revenue outgoing 
multimedia messages + spending speed variance + sum count 
incoming multimedia messages + weekly recharge amount + 

incoming video count + sum incoming video count + number of 
retailers visited weekly 

1 + annual precipitation + annual temperature + transport time to 
closest urban settlement + distance to water + EVI + nighttime 
lights + subscribers per tower + recharge average per tower + 

outgoing multimedia messages + fraction of 300 Thaka top-ups + 
number of retailers visited weekly (CV) + volume of incoming 
multimedia messages + outgoing text charges + sum revenue 
outgoing multimedia messages + spending speed variance + 

median time between refills + time variable (CV) 

*CV=coefficient of variation 
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Table S2C. Income models for RS-only, CDR-only, and CDR+RS data: national, urban, and rural strata. 
AIC NATIONAL URBAN RURAL 

RS-only 83194 17295 64569 

CDR-only 83109 17180 64413 

CDR+RS 82895 17129 64330 

MODEL 
   RS-only 1 + nighttime lights + transport time to closest urban settlement 

+ annual temperature + EVI + distance to raod + distance to 
water + annual precipitation + elevation  

1 + nighttime lights + transport time to closest urban settlement + 
distance to roads 

1 + nighttime lights + annual temperature + distance to roads + 
annual precipitation + elevation 

CDR-only 

1 + percent nocturnal calls + number of places + entropy of 
places + entropy of contacts + radius of gyration + interactions 
per contact + spending speed + outgoing video duration + sum 
outgoing video duration + average outgoing text count + sum 
outgoing text count + fraction of 300 Thaka top-ups + fraction 

of 10 Thaka top-ups + recharge amount (CV) + number of 
retailers visited weekly (CV) + recharge amount per transaction 
+ spending speed variance + sum spending speed variance + 
sum count incoming texts + handset weight + outgoing voice 

duration + sum outgoing voice duration + sum outgoing internet 
volume + time variable (CV) + fraction of 200 Thaka top-ups 

1 + percent nocturnal calls + number of places + entropy of places 
+ radius of gyration + spending speed + outgoing video duration + 
sum outgoing video duration + average outgoing text count + sum 
outgoing text count + fraction of 300 Thaka top-ups + number of 
retailers visited weekly (CV) + volume of incoming multimedia 
messages + sum volume of incoming multimedia messages + 
recharge amount per transaction + count incoming multimedia 
messages + sum count incoming multimedia messages + sum 

outgoing voice duration + outgoing internet volume + sum 
outgoing internet volume + recharge amount per transaction (CV) 

+ time variable (CV) 

1 +number of places + entropy of places + entropy of contacts + 
spending speed + duration outgoing value added services + sum 

duration outgoing value added services + sum outgoing video 
duration + handset weight + software OS version + fraction of 300 

Thaka top-ups + fraction of 10 Thaka top-ups + coefficient of 
variation: recharge amount + number of retailers visited weekly 
(CV) + volume of incoming multimedia messages + sum volume 
of incoming multimedia messages + spending speed variance + 
sum spending speed variance + sum count incoming multimedia 
messages + count incoming texts + sum count incoming texts + 

weekly recharge amount + outgoing voice duration + sum 
outgoing voice duration + outgoing internet volume + time variable 

(CV) 

CDR-RS 
1 + nighttime lights + transport time to closest urban settlement 
+ EVI + distance to road + percent nocturnal calls + number of 

places + entropy of places + entropy of contacts + radius of 
gyration + spending speed + outgoing video duration + sum 

outgoing video duration + average outgoing text count + sum 
outgoing text count + recharge amount (CV) + number of 

retailers visited weekly (CV) + recharge amount per transaction 
+ spending speed variance + sum spending speed variance + 
sum count incoming texts + handset weight + outgoing voice 

duration + sum outgoing voice duration + sum outgoing internet 
volume + time variable (CV) + fraction of 200 Thaka top-ups 

1 + nighttime lights + transport time to closest urban settlement + 
annual temperature + distance to roads + annual temperature + 
percent nocturnal calls + number of places + radius of gyration + 
spending speed + outgoing video duration + sum outgoing video 
duration + average outgoing text count + sum outgoing text count 

+ fraction of 300 Thaka top-ups + number of retailers visited 
weekly (CV) + volume of incoming multimedia messages + 

recharge amount per transaction + count incoming multimedia 
messages + sum count incoming multimedia messages + 
outgoing voice duration + outgoing internet volume + sum 

outgoing internet volume + recharge amount per transaction (CV) 
+ time variable (CV) 

1 + nighttime lights + annual precipitation + number of places + 
entropy of places + entropy of contacts + spending speed + sum 

outgoing video duration + handset weight + software OS version + 
fraction of 300 Thaka top-ups + fraction of 10 Thaka top-ups + 
coefficient of variation: recharge amount + number of retailers 

visited weekly (CV) + weekly recharge amount + outgoing voice 
duration + sum outgoing voice duration +  outgoing internet 

volume + time variable (CV) 

*CV=coefficient of variation 
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Table S3. Comparison of r2 and RMSE for INLA models run with only a structured spatial 

random effect (Spatial interpolation) and the full model (Spatial model + covariates). 

Poverty Metric 
 

Spatial 
interpolation 

Spatial model + covariates 
(from Table 1) 

    R2, RMSE R2, RMSE 

DHS WI  0.49, 0.578 0.76, 0.394 

PPI  0.31, 58.727 0.32, 57.439 

Income  0.10, 123.963 0.27, 105.465 
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Table S4. Comparison of deviance information criterion (DIC) model fit for Bayesian 

geostatistical models run with a structured spatial random effect (Spatial model) and 

without (Non-spatial model). 

WHOLE COUNTRY 

Poverty Metric Model Spatial model Non-spatial model 

    DIC DIC 

DHS WI 
CDR - 
RS 463.7 574.6 

 
CDR 272.5 862.2 

 
RS 465.7 581.5 

PPI 
CDR - 
RS 1361.3 1439.8 

 
CDR 1349.7 1473.1 

 
RS 1358.6 1421.4 

Income 
CDR - 
RS 66142.5 66143.0 

 
CDR 66314.6 66314.3 

 
RS 66482.6 66480.4 

URBAN 

Poverty Metric Model Spatial model Non-spatial model 

    DIC DIC 

DHS WI 
CDR - 
RS 449.4 576.0 

 
CDR 239.2 873.2 

 
RS 454.1 582.0 

PPI 
CDR - 
RS 1371.6 1432.3 

 
CDR 1365.7 1470.1 

 
RS 1358.3 1417.7 

Income 
CDR - 
RS 66180.6 66179.8 

 
CDR 66363.3 66365.7 

 
RS 66693.0 66690.3 

RURAL 

Poverty Metric Model Spatial model Non-spatial model 

    DIC DIC 

DHS WI 
CDR - 
RS 458.0 574.5 

 
CDR 63.1 873.5 

 
RS 451.5 595.5 

PPI 
CDR - 
RS 1376.9 1444.6 

 
CDR 1342.9 1475.9 

 
RS 1357.7 1419.4 

Income 
CDR - 
RS 66262.5 66260.6 

 
CDR 66395.0 66392.1 

  RS 65548.9 66503.8 
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Figure S1. Survey sample locations for DHS wealth index (A), Progress out of Poverty Index (B), 
and income survey respondents (C). 
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Figure S2. National level prediction maps for mean wealth index (A) with uncertainty (D); mean 
probability of households being below $2.50/day (B) with uncertainty (E); and mean USD income 
(C) with uncertainty (F). Maps were generated using call detail record features only and Bayesian
geostatistical models. Red indicates poorer areas in prediction maps, and higher error in
uncertainty maps.
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Figure S3. National level prediction maps for mean wealth index (A) with uncertainty (D); mean 
probability of households being below $2.50/day (B) with uncertainty (E); and mean USD income 
(C) with uncertainty (F). Wealth index and income maps were generated using remote sensing
data only; PPI maps were generated using call detail record features and remote sensing data. All
maps were generated using Bayesian geostatistical models. Red indicates poorer areas in
prediction maps, and higher error in uncertainty maps.
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Figure S4. Stratified urban/rural prediction maps for mean wealth index (A) with uncertainty (D); 
mean probability of households being below $2.50/day (B) with uncertainty (E); and mean USD 
income (C) with uncertainty (F). Maps were generated using call detail record features only and 
Bayesian geostatistical models. Red indicates poorer areas in prediction maps, and higher error in 
uncertainty maps. 
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Figure S5. Stratified urban/rural prediction maps for mean wealth index (A) with uncertainty (D); 
mean probability of households being below $2.50/day (B) with uncertainty (E); and mean USD 
income (C) with uncertainty (F). Maps were generated using call detail record features, remote 
sensing data, and Bayesian geostatistical models. Red indicates poorer areas in prediction maps, 
and higher error in uncertainty maps. 



Mapping poverty using mobile phone and satellite data 
J.E. Steele, P. Sundsoy, C. Pezzulo, V. Alegana, T. Bird, J. Blumenstock, J. Bjelland, YA de Montjoye, K. 
Engo-Monsen, A. Iqbal, K. Hadiuzzaman, X. Lu, E. Wetter, L. Bengtsson, and A.J. Tatem 

23	  

Figure S6. Stratified urban/rural prediction maps for mean wealth index (A) with uncertainty (D); 
mean probability of households being below $2.50/day (B) with uncertainty (E); and mean USD 
income (C) with uncertainty (F). Maps were generated using remote sensing data only and 
Bayesian geostatistical models. Red indicates poorer areas in prediction maps, and higher error in 
uncertainty maps. 
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