
1Scientific RepoRts | 6:22916 | DOI: 10.1038/srep22916

www.nature.com/scientificreports

Efficient network disintegration 
under incomplete information: the 
comic effect of link prediction
Suo-Yi Tan1,*, Jun Wu1,*, Linyuan Lü2,3,*, Meng-Jun Li1 & Xin Lu1,4

The study of network disintegration has attracted much attention due to its wide applications, 
including suppressing the epidemic spreading, destabilizing terrorist network, preventing financial 
contagion, controlling the rumor diffusion and perturbing cancer networks. The crux of this matter is to 
find the critical nodes whose removal will lead to network collapse. This paper studies the disintegration 
of networks with incomplete link information. An effective method is proposed to find the critical 
nodes by the assistance of link prediction techniques. Extensive experiments in both synthetic and 
real networks suggest that, by using link prediction method to recover partial missing links in advance, 
the method can largely improve the network disintegration performance. Besides, to our surprise, we 
find that when the size of missing information is relatively small, our method even outperforms than 
the results based on complete information. We refer to this phenomenon as the “comic effect” of link 
prediction, which means that the network is reshaped through the addition of some links that identified 
by link prediction algorithms, and the reshaped network is like an exaggerated but characteristic comic 
of the original one, where the important parts are emphasized.

Complex networks describe a wide range of systems in nature and society1–3. Examples include the Internet, met-
abolic networks, electric power grids, supply chains, urban road networks, and the world trade web among many 
others. The study of complex networks has become an important area of multidisciplinary research involving 
physics, mathematics, biology, social sciences, informatics, and other theoretical and applied sciences. Due to its 
broad applications, research on the structural robustness of complex networks, i.e., the ability to endure threats 
and survive accidental events, has received growing attention4–9 and has become one of the central topics in the 
complex network research.

In the majority of cases, networks are beneficial, such as power grids and Internet, where we want to preserve 
their function. Many studies have considered methods for maximizing the structural robustness of these ben-
eficial networks10–16. In another situation by which this paper is motivated, however, we want to disintegrate a 
network if it is harmful, such as immunizing a population in social networks or suppressing the virus propagation 
in computer networks. The immunization problem is mathematically equivalent to asking how to disintegrate 
a given network with a minimum number of node removals17, which is very important since in most cases the 
number of immunization doses is limited or very expensive. Other examples of network disintegration include 
destabilizing terrorist networks18, preventing financial contagion19, controlling the rumor diffusion20, and per-
turbing cancer networks21. Although the problem of network disintegration attracts less attention than the prob-
lem of network protection, some related works have been devoted to the study of the disintegration strategy. For 
example, Holme et al.22 compared the effect of four different targeted disintegration strategies: high degree and 
betweeness centrality, and their corresponding adaptive versions where the degree (betwenness) of the remaining 
node is recomputed after each node removal. They found that the removals by the two adaptive methods out-
perform the two original static methods. Chen et al.23 developed a new immunization strategy, called the “equal 
graph partitioning” (EGP) strategy. The main idea of the EGP method is to fragment the network into many 
connected clusters of equal size, which requires 5% to 50% fewer immunization doses compared to the classical 
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targeted strategy. Schneider et al.24 developed an immunization approach based on optimizing the susceptible 
size, which outperforms the best known strategy based on immunizing the highest-betweenness links or nodes.

In the early works on network disintegration, it was usually assumed that the attacker can obtain perfect 
information on the network structure, in other words, they assumed that the observed networks are complete. 
However, the complete information of network structure is not always available in realistic cases. Growing atten-
tion has been paid to the study of network disintegration with imperfect information. Dezső et al.25 proposed a 
biased treatment strategy against viruses spreading based on uncertain information, in which the likelihood of 
identifying and administering a cure to an infected node depends on its degrees as kα. Li et al.26 studied the opti-
mal attack problem based on incomplete information, which means that one can obtain the information of partial 
nodes, when the information is certain. Moreover, many researches27–30 focused on the disintegration strategy 
based on local information, i.e. the knowledge of the neighborhood.

Different from the above studies which consider either uncertain information or partial information of indi-
vidual level, in this paper we focus on another important and frequent scenario of imperfect information, such 
that part of links (i.e., interactions between nodes) are missing in the observed network. In many real networks, 
such as food webs31, terrorist networks32, sexual contact networks33, protein-protein interaction networks34, and 
disease relationship networks35, it is easy to obtain the information of nodes, but difficult to detect the relations or 
interactions between nodes, which is usually costly or even infeasible. The missing links may reduce the network 
disintegration performance. To address this problem, a potential approach is to recover the missing links (or part 
of the missing links), which remind us the so-called “link prediction” problem36. Link prediction algorithms aim 
at estimating the likelihood of the existence of a link between two nodes based on the observed network struc-
ture and the attributes of nodes. Therefore, before the attack we can use one of the link prediction algorithms to 
recover parts of the missing links and then identify the targets based on the “improved” network. Experiments on 
both synthetic and real networks show that with the assistance of link prediction the performance of disintegra-
tion can be largely improved.

Results
Network disintegration model based on link prediction. A network can be presented by a simple 
undirected graph G =  (V, E), where V is the set of nodes, and E is the set of links. Multiple links and self-loops are 
not allowed. Let N =  |V| and W =  |E| be the number of nodes and number of links, respectively. Let ki be the 
degree of node vi, which equals the number of links connected to node vi. We assume that all nodes are known but 
partial link information is missing. Denote by EO and EM the set of observed links and missing links, respectively. 
Clearly, we have ∪ =E E EO M . Therefore, the observed network can be presented by GO =  (V, EO). We define 
α =  |EM|/W( ∈  [0,1]) as the proportion of missing link. Denote by EU =  V ×  V the universal set containing all 
N(N −  1)/2 possible links. The task of link prediction is to reveal the set of missing links EM from the space of link 
prediction ΩP =  EU −  EO. Denote by ∪=G V E E( , )P O P  the improved network by adding the predicted links 
EP(⊆ ΩP). We define the ratio β =  |EP|/|EO| as the magnitude of additional link information. In general, we have  
EP ≠  EM due to the error predictions. Denote by ∩=+E E EP M the set of links that are correctly predicted. We 
use the true positive rate (recall or sensitivity) RTPR =  |E+|/|EM| to measure the proportion of links that are cor-
rectly predicted among the missing links set EM, and the ratio RPPV =  |E+|/|EP|, i.e., the positive predictive value 
(precision), to measure the proportion of links that are correctly predicted among the predicted links set EP . To 
express the mathematical description of link prediction intuitionally, we give the iceberg diagram for link predic-
tion problem in Fig. 1. In a manner of speaking, the network is like an iceberg. We can only see the part above sea 
level but do not know the rest under the sea. Link prediction is a technique to infer the invisible part based on the 
knowledge of observed part.

We identify the targets based on the improved network GP and then carry out the attack in the original com-
plete network G. Note that if a node is attacked, its attached links will be removed together with its removal. 
Denote by ⊆V̂ V  the set of nodes that are attacked (i.e., targets) and ⊆Ê E the set of removed links, then the 
network obtained after node attacks is = − −ˆ ˆ ˆG V V E E( , ). We define the ratio = ∈  ˆf V N/ [0, 1] as the 
strength coefficient of node attacks. Among the many attack strategies28 we apply the most used “high degree 
strategy” in this paper. In this strategy, nodes are attacked according to their rank of degree. i.e., high degree nodes 
will be attacked firstly. Let ki

O be the degree of node vi in GO and ki
P be the degree of node vi in GP. Without link 

prediction, we remove nodes in the descending order of the node degree ki
O. With link prediction, we remove 

nodes in the descending order of the node degree ki
P. As the attack strength coefficient f increases, the network 

will eventually collapse at a critical value fc which is generally used to measure the structure robustness of a com-
plex network from the view of defenders. The larger the fc is, the more robust the network is. Here we employ fc to 
evaluate the performance of network disintegration strategy from the view of attackers. Smaller fc implies more 
efficient network disintegration.

Figure 2 presents a simple example of how our method works. The complete network contains N =  5 nodes 
and W =  7 links. The initial degrees of the five nodes in the complete network are kA =  1, kB =  3, kC =  3, kD =  3, 
and kE =  4, respectively. We assume that three links are missing, namely EM =  {eCD, eCE, eDE}. The observed net-
work contains four links, EO =  {eAE, eBC, eBD, eBE}. Then the magnitude of missing link information is 
α =  |EM|/W =  3/7 and the space of link prediction is ΩP =  {eAB, eAC, eAD, eCD, eCE, eDE}. Assume we add three links, 
i.e., EP =  {eAD, eCE, eDE}, predicted by one link prediction algorithm37. Then the magnitude of link prediction infor-
mation is β =  |EP|/|EO| =  3/4. Among the three links in EP, only eCE and eDE are predicted right, i.e., 

∩= =+E E E e e{ , }P M CE DE . Thus we obtain the sensitivity RTPR =  |E+|/|EM| =  2/3 and the precision 
RPPV =  |E+|/|EP| =  2/3. The degrees of the five nodes in the observed network GO are =k 1A

O , =k 3B
O , =k 1C

O , 
=k 1D

O  and =k 2E
O , respectively. After the addition of three predicted links, their degrees in the improved net-

work GP (see Fig. 2(d)) become =k 2A
P , =k 3B

P , =k 2C
P , =k 3D

P  and =k 4E
P , respectively. Based on the observed 
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network GO, the node vB with the largest degree =k 3B
O  will be removed preferentially as shown in Fig. 2(c), and 

the network Ĝ obtained after removing the node vB is still connected. While based on the improved network, the 
node vE with the largest degree =k 4E

P  will be removed preferentially as shown in Fig. 2(e), and the network Ĝ 
obtained after removing the node vE is disintegrated into two components.

Comic effect of link prediction. To analyze the impact of link prediction on network disintergration, we 
firstly perform experiments on synthetic networks. Due to the ubiquity of scale-free networks with a power-law 
degree distribution p(k) ~ k−λ in real life world, our studies first focus on the network disintegration in scale-free 

Figure 1. Iceberg diagram for link prediction problem. The triangle represents the set of links E, i.e., the 
complete information, which is divided into two parts: above the sea level is the observed part EO, below the sea 
level is the invisible (missing) part EM. The hexagon represents the set of predicted links, namely EP. The polygon 
filled by stripes represents the set of links that are predicted right, namely E+. The circle represents the universal 
set containing all possible links EU.

Figure 2. Illustration of network disintegration model based on link prediction. (a) The complete network 
G. (b) The observed network GO with three missing links. (c) The network obtained after removing the node vB 
based on the observed network. (d) The improved network GP with three predicted links added (dotted lines). 
(e) The network obtained after removing the node vE based on the improved network. The size of each node is 
proportional to its degree in the current network.
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networks. The random scale-free networks with degree distributions p(k) =  (λ −  1)mλ−1 k−λ are generated by 
using the method proposed in ref. 38. In Fig. 3, we report the dependence of critical attack strength coefficient fc 
on the magnitude of link prediction information β. We use resource allocation (RA) link prediction algorithm37 
to predict the missing links. For comparison, we also show the case of complete link information, i.e. α =  0, which 
is usually considered as the ideal case.

From Fig. 3, we can see that with the increasing number of missing links, the fc curve shifts gradually to 
top-left. For α =  0.1, α =  0.3 and α =  0.5, fc first decreases with β and then increases after β >  β*. We call the 
region [0,β*] the “valid prediction area” (VPA) and the region (β*, βmax) the “excessive prediction area” (EPA) 
where the inclusion of any additional predicted links will bring negative effects on the performance of network 
disintegration. To our surprise, we find an area in which the performance of our method is even better than the 
“ideal case” where the critical attack strength coefficient is fc

0. We call the area “surpassing prediction area (SPA)”, 
see Fig. 3(a). Figure 4(a) shows the performance of network disintegration under the optimal magnitude of link 
prediction information (i.e., ⁎fc ), along with the performance of network disintegration without link prediction 
(i.e., fc  when β =  0). The difference between ⁎fc  and f c indicates the contribution of the additional links predicted 
by link prediction algorithm. We find that when α <  0.24, ⁎fc  is lower than fc

0, which corresponds to the SPA. It 
can be explained that the link prediction amplifies the heterogeneity of node importance and reshape the network 
structure like drawing an exaggerated and characteristic comic. We refer to this phenomenon as the “comic effect” 
of link prediction. The values of ⁎fc  and fc  meet at α =  0.6, implying that in some cases we can reconstruct the 
original network to improve the performance of network disintegration even when the network has about 60% 
links are missing.

It is worth pointing out that, when α is large enough, see in Fig. 3(d) when α =  0.7, there is no “valid predic-
tion area” and β* =  0. It suggests that link prediction will be counterproductive for the network disintegration 
performance if overmuch links are missing. The reason is that the link prediction accuracy is usually very low if 
the prediction based on the observed network with many missing links39. These results show that when the link 
information is not complete, a proper number of additional links can efficiently improve the performance of net-
work disintegration and even obtain better performance (i.e., lower fc) than the case with complete information. It 
is true that the added links by link prediction may connect to wrong nodes and thus we may not recover the orig-
inal network completely. However, through link prediction, we partly recover the ranking of node importance, 
which is really critical in network disintegration.

Figure 3. The critical attack strength coefficient fc versus the magnitude of link prediction information 
β with various magnitude of missing link information α in a random scale-free networks. The degree 
distribution follows p(k) =  (λ −  1)mλ−1 k−λ, where N =  1000, λ =  2.5, and m =  2. The results are averaged over 
100 independent realizations. The solid lines represent the “valid prediction area” (VPA) and the dash lines 
represent the “excessive prediction area” (EPA). The dash dotted lines are the reference lines, which represent 
the case of complete link information, namely α =  0. The filled area represents the“surpassing prediction area” 
(SPA) where fc is even lower than the case of complete link information.
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We also show in Fig. 4(b) the optimal magnitude of link prediction information β* as a function of the mag-
nitude of missing link information α. We find that β* monotonically decreases with α and eventually reaches to 
zero at about α =  0.6, which suggests that the less links are missing, the more predicted links (usually with high 
accuracy) are required to be added to obtain the best effect. On the contrary, if more links are missing, the less 
predicted links are added because adding more links will lead to more mistakes due to the low accuracy of link 
prediction. The dependence of the critical attack strength coefficient fc on parameter α and β is shown in Fig. 5, 
where the VPA, EPA and SPA can be clearly partitioned.

The measure fc is the critical fraction of nodes at which the network completely collapses. However, sometimes 
we are also interest in the case when the network suffers a big damage without completely collapsing. Figure 6 

Figure 4. The contribution of link prediction to the network disintegration. (a) The optimal critical attack 
strength coefficient ⁎fc  (squares), comparing with the critical attack strength coefficient without link prediction 
β =f ( 0)c  (circles). The horizontal dash dot line presents the value of = .f 0 215c

0  obtained under complete 
information. (b) The optimal magnitude of link prediction information β*. The original network is the same as 
the one we used in Fig. 3. The results are averaged over 100 independent realizations of link prediction.

Figure 5. The critical attack strength coefficient fc in the (α, β) plane. The original network is the same as the 
one we used in Fig. 3. The red dash line presents the optimal magnitude of link prediction information β*. The 
left region and the right region of the red dash line are corresponding to the valid prediction area (VPA) and 
excessive prediction area (EPA), respectively. The area under the green dash dot line is the surpassing prediction 
area (SPA). The results are averaged over 100 independent realizations of link prediction.
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reports the fraction of nodes in the giant component after node attacks S as a function of attack strength coeffi-
cient f with various magnitude of missing link information α. Here we set β =  β* for corresponding α, namely 
β =  0.85 for α =  0.1, β =  0.55 for α =  0.3, β =  0.1 for α =  0.5 and β =  0 for α =  0.7. The effect of network disinte-
gration can be characterized by the area under the curve of S. The smaller the area is, the more efficient the net-
work disintegration is. Therefore, the area between the curve of S with link prediction (dotted lines) and without 
link prediction (solid lines) demonstrates the improvement of the performance of network disintegration with 
the assistance of link prediction. The improvement of our method is significant for small α and the “comic effect” 
of link prediction appears in the case of α =  0.1, see Fig. 6(a).

Experiments on real networks. The study of disintegration is important for many real-world systems such 
as rumor spreading in online social networks, disease transmission through airlines and foodweb. To evaluate 
the performance of our method, we investigate four real-world networks: (i) the Political blogosphere network 
(PB)40, (ii) the network of the US air transportation system (USAir) (http://toreopsahl.com/datasets/#usairports), 
(iii) the Foodweb of south Florida during the wet season (Foodweb)41 and (iv) the collaboration network between 
Jazz musicians (Jazz)42. Basic statistics of these networks are shown in Table 1. As we can see, all networks are well 
connected, with high clustering coefficients and short average distances.

We simulate the prediction and disintegration process on these networks, and results are shown in Fig. 7. 
All four networks exhibit similar pattern with the synthetic networks: the critical attack strength coefficients, fc 
all decrease at the beginning as the ratio of additional links increase, after an optimal ratio, the performance of 
disintegration degenerates while more links are added. It is interesting to observe that, all the four networks have 
a large “surpassing prediction area”, where fc deceases to even below the value obtained under complete infor-
mation. The SPA for the four networks are β ∈  [0.05, 2.35] for PB, β ∈  [0.15, 1.45] for USAir, β ∈  [0.15, 1.75] for 
Foodweb and β ∈  [0.05, 1.55] for Jazz.

Discussion
Network disintegration with incomplete link information is an important and challenging problem. In this 
paper, we introduced the link prediction as a strategy for attackers to improve the performance of network 

Figure 6. The relative size of giant component S versus attack strength coefficient f under attacks with 
complete link information (dash dot lines), attacks without link prediction (dot lines) and attacks with 
optimal link prediction information (solid lines). The filled area demonstrates the improvement of the effect 
of network disintegration due to link prediction. The original network is the same network as in Fig. 3. For 
different α, we set β =  β* as shown in Fig. 3. The results are averaged over 100 independent realizations of link 
prediction.

http://toreopsahl.com/datasets/#usairports
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disintegration. We showed that although the missing of link information harms the effect of network disintegra-
tion, link prediction can help to improve the performance remarkably. We found with surprise that if the magni-
tude of missing link information is not too large, the effect of network disintegration with the assistance of link 
prediction even can be better than the case of complete link information. We called this phenomenon the “comic 
effect” of link prediction. Although, the link prediction does not recover the missing information completely, but 
it reshapes the network just like an exaggerated but characteristic comic. As a result, the importance of the key 
nodes is emphasized by adding a number of predicted links. We believe that the comic effect of link prediction 
may exist in many backgrounds, not only in the network disintegration. For example, link prediction can not 
only help to improve the classification accuracy of partially labeled networks43 but also be used in recommender 

Networks N W 〈k〉 C r 〈l〉
PB 1222 16714 27.36 0.36 − 0.221 3.65

USAir 1574 28236 35.8 0.384 − 0.113 3.14

Foodweb 128 2106 32.906 0.312 − 0.111 1.73

Jazz 198 2742 27.7 0.618 0.020 2.23

Table 1.  Basic statistics of four real networks. N and W are the number of nodes and links. 〈 k〉  is the average 
degree; C is the clustering coefficient; r is the assortativity; 〈 l〉  is the average shortest distance.

Figure 7. The critical attack strength coefficient fc versus β with a certain missing information accuracy 
α = 0.1 in four real networks. The solid lines represent the “valid prediction area” (VPA) and the dash lines 
represent the “excessive prediction area” (EPA). The dash dot lines are the reference lines, which represent the 
case of complete link information, namely α =  0. The filled area represents the“surpassing prediction area” 
(SPA) where fc is even lower than the case of complete link information. For each β, the result is averaged over 
100 simulations.
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systems44. These useful applications demonstrate that hidden information revealed by link prediction can help to 
improve the accuracy of information filtering algorithms.

Moreover, we exposed the area of excessive prediction where the addition of more predicted links will give 
negative contribution. An optimal magnitude of link prediction information is obtained when the critical attack 
strength coefficient reaches the minimum. Beyond the optimal magnitude of link prediction information, the 
contribution of link prediction to the network disintegration will decrease and can even be negative. In addition, 
we found that the optimal magnitude of link prediction information decreases with the increasing of missing link 
information, indicating that when there are many missing links it should be very cautious to add new links. For 
real applications, how to obtain the optimal magnitude of link prediction information for real networks is still an 
open and challenging problem, as we usually don’t know the portion of missing links and thus it’s difficult to eval-
uate the algorithm’s performance. According to the results in this paper, by adding a small number of predicted 
links is usually beneficial when the number of missing links is moderate. Future studies are required to evaluate 
the choice of appropriate link prediction algorithms to achieve better network disintegration performance45.

Methods
Algorithms for link prediction. The link prediction problem has been a long-standing challenge in mod-
ern information era. Its main goal is to estimate the existence likelihood of nonobserved links based on the known 
topology and node attributes. The simplest index of link prediction is the common neighbors (CN) index which 
in common sense, two nodes, x and y, are more likely to have a link if they have many common neighbors46.

∩= Γ Γ .S x y( ) ( ) (1)xy
CN

where Γ (t) denotes the set of neighbors of node t.
Resource Allocation (RA) index37 is an improved index based on CN, which assign less-connected neighbors 

more weight. The index is motivated by the resource allocation dynamics on networks. Consider a pair of nodes, 
x and y, which are not directly connected. The node x can send some resource to y, with their common neighbors 
being transmitters. The similarity between x and y can be defined as the amount of resource y received from x. 
The mathematical expressions are

∑
∩

=
Γ∈Γ Γ

S
z

1
( )

,
(2)

xy
RA

z x y( ) ( )

Performance measurement of network disintegration. In the context of complex networks, the crit-
ical removal fraction of nodes fc for the disintegration of networks is generally used to characterize the network 
robustness from the view of defenders. The larger fc is, the more robust the network is. This measure emerged 
from the random graph theory and was stimulated by Albert et al.4. Instead of a strict extreme property, it con-
siders statistically how the removal of nodes leads to a deterioration of network performance, and eventually to 
the collapse of the network at a given critical removal fraction fc. The most common performance measurements 
include the diameter, the size of the largest component and the average path length. We choose κ ≡  〈 k2〉 /〈 k〉 〈 2 
as the criterion for the collapse of networks47,48, where the angular brackets 〈 .〉  denote an ensemble average. After 
each node is removed, we calculate κ. When κ becomes less than 2, we record the number of nodes t removed 
up to that point. The threshold fc is calculated as fc =  〈 t〉 /N. Here we employ fc to measure the effect of network 
disintegration strategy from the view of attackers. Smaller fc implies more efficient network disintegration.
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