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Abstract 

Background: Numerous countries around the world are approaching malaria elimination. Until global eradication is 
achieved, countries that successfully eliminate the disease will contend with parasite reintroduction through inter‑
national movement of infected people. Human‑mediated parasite mobility is also important within countries near 
elimination, as it drives parasite flows that affect disease transmission on a subnational scale.

Methods: Movement patterns exhibited in census‑based migration data are compared with patterns exhibited 
in a mobile phone data set from Haiti to quantify how well migration data predict short‑term movement patterns. 
Because short‑term movement data were unavailable for Mesoamerica, a logistic regression model fit to migration 
data from three countries in Mesoamerica is used to predict flows of infected people between subnational adminis‑
trative units throughout the region.

Results: Population flows predicted using census‑based migration data correlated strongly with mobile phone‑
derived movements when used as a measure of relative connectivity. Relative population flows are therefore pre‑
dicted using census data across Mesoamerica, informing the areas that are likely exporters and importers of infected 
people. Relative population flows are used to identify community structure, useful for coordinating interventions and 
elimination efforts to minimize importation risk. Finally, the ability of census microdata inform future intervention 
planning is discussed in a country‑specific setting using Costa Rica as an example.

Conclusions: These results show long‑term migration data can effectively predict the relative flows of infected 
people to direct malaria elimination policy, a particularly relevant result because migration data are generally easier to 
obtain than short‑term movement data such as mobile phone records. Further, predicted relative flows highlight pol‑
icy‑relevant population dynamics, such as major exporters across the region, and Nicaragua and Costa Rica’s strong 
connection by movement of infected people, suggesting close coordination of their elimination efforts. Country‑
specific applications are discussed as well, such as predicting areas at relatively high risk of importation, which could 
inform surveillance and treatment strategies.
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Background
Though malaria remains a global health priority and 
causes an estimated 438,000 deaths annually [1], mor-
tality has declined dramatically in recent decades [2, 3] 
and several countries around the world are approaching 

parasite elimination. Country-specific elimination is 
an important step towards the ultimate goal of malaria 
eradication [4], and requires both stopping transmission 
within national borders and management of imported 
malaria. Importation and within-country transmis-
sion dynamics depend greatly upon human movement 
patterns, as human-mediated parasite mobility facili-
tates source-sink dynamics within a country and drives 
importation risk from international exporters of infected 
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people [5, 6]. Thus, malaria control programmes should 
take into account human movement and malaria mobil-
ity when designing malaria elimination plans to achieve 
elimination in a robust and efficient way [7].

Finding appropriate human movement information 
for predicting malaria mobility is difficult, as movement 
varies in duration, frequency, and spatial scale [8, 9], and 
reliable, globally-consistent movement data are difficult 
to obtain [10]. Various movement typologies are captured 
by different methods, each with inherent advantages and 
disadvantages [11]. For example, short-term circulatory 
movement can be captured using mobile phone call data 
records, which document the towers that rout a user’s 
calls and texts. By observing the locations of towers uti-
lized by a user over time, short-term movement patterns 
can be inferred to yield important insights into local dis-
ease dynamics [12–14]. Often, these data do not record 
cross-border movements, however [10], as network oper-
ators generally only provide service within a single coun-
try. Future mobile phone data could reflect international 
movement if they include roaming calls/texts or handset 
identifiers which could be used to link users between 
network operators, but most currently available mobile 
phone data are restricted to a single country.

Census data and other migration-oriented data such 
as migrant stock data can begin to fill these gaps [10], as 
censuses often include questionnaires regarding previous 
residence or birthplace including international origins 
[11]. Further, these data are more readily available than 
mobile phone records [11], making them applicable for a 
larger number of countries. Spatial connectivity between 
subnational regions can be gleaned from these migra-
tion-oriented data by analysing population flows between 
pairs of subnational administrative units, and models fit 
using these data can be used to predict flows between 
administrative units in the same country [11, 16] and in 
different countries [17]. Their direct utility for predicting 
malaria parasite flows is limited, however, as they record 
longer-term migration related movements, a minor com-
ponent of overall parasite mobility [18].

Ideally, regional mapping of malaria connectivity 
should integrate the strengths of short-term movement 
data (such mobile phone records, travel history sur-
veys, or GPS tracking) with more readily available data 
sets such as census-based migration. Importantly, pre-
vious studies suggest that migration and mobile phone 
data exhibit similar general patterns that are robust 
across spatial scales of movement [19]. Though census 
migration data greatly under predict flows compared to 
mobile phone call data records, using relative instead of 
absolute flows yields similar connectivity networks in 
both data sets. Because census-based migration data are 
readily available and typically more representative of the 

population at-large than mobile phone data, these data 
can be used across large scales to predict relative flows 
and connectivity maps. Validation against data sets that 
capture more frequent movements is necessary to ensure 
predictive accuracy for predicting malaria parasite move-
ment [19], however.

This study first confirms whether data reflect simi-
lar general patterns as short-term movement data by 
comparing migration patterns in census microdata 
with movement in a mobile phone data set from Haiti. 
The mobile phone and census data sets complement 
each other reasonably well for this validation exercise, 
as mobile phone data capture short-term movement 
effectively even in the context of demographic biases in 
mobile phone ownership [20] and migration data cap-
ture the international movements necessary for regional 
mobility mapping. The migration data are then used to 
predict relative flows of infected people between first-
level administrative units throughout Mesoamerica, with 
accompanying discussion on how these flows can guide 
policy design. A final discussion focuses on Costa Rica to 
show the utility of these measures in directing country-
specific elimination policy.

Mesoamerica is an important setting for these analy-
ses, as countries throughout Mesoamerica are rapidly 
approaching elimination with overall declines of  >9  % 
each year from 2000 to 2011 in annual parasite incidence, 
or the number of cases appearing at health facility per 
year, per 100,000 individuals [21]. Elimination efforts 
will be enhanced by appropriately accounting for human 
mobility across national borders [22], especially as Mes-
oamerica exhibits the highest emigration rates in the 
world [23] and has highly mobile migrant labour popula-
tions [24]. Significant regional programmatic support for 
elimination has been provided through programmes such 
as RAVREDA/AMI and the Mesoamerican Health Ini-
tiative 2015 as well [25], and the presented analyses can 
help elucidate regional parasite movement to guide these 
programmes into the future.

Methods
First, movement patterns in mobile phone and cen-
sus microdata from Haiti are compared to validate 
whether the census data can predict short-term move-
ment. Logistic regression models fit using both data sets 
are compared to determine if movement patterns dif-
fered with respect to covariates known to be good pre-
dictors of subnational movement [16]. Then, a similarly 
structured model is fit using census microdata from 
El Salavdor, Costa Rica, and Nicaragua, used to predict 
population flows throughout Mesoamerica. Combined 
with regional incidence estimates, model results are used 
to predict regional flows of infected people, community 
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membership, net export, and net import of infected peo-
ple for each administrative unit. Finally, because Costa 
Rica census data were available for these analyses, coun-
try-specific analyses are shown to discuss how they can 
specifically inform national policy.

All statistical analyses in this manuscript are performed 
in R version 3.1.1 [26] and the glm and lmer functions 
from the lme4 package [27]. The data frames of output 
data and administrative unit metadata are provided in 
Additional files 2 and 3. In these files, the “uidfr” and 
“uidto” variables in the output data frame link with “uid” 
in the provided table of administrative unit names and 
codes. These administrative unit names and code corre-
spond to the Food and Agriculture Organization Global 
Administrative Unit Layers (GAUL), which are available 
from the FAO website [28]. Further, Table 1 contains the 
fitted model coefficients, which can be used to generate 
predictions for other regions.

Data sources and model specification
Census microdata
The census microdata originate from the Integrated 
Public Use Microdata Series, International (IPUMSI; 
[29]). The validation exercise uses mobile phone data 
from 2010 and census microdata from a census of Haiti 
in 2003. In a separate modelling exercise, migration 
data from censuses of El Salvador (2007), Costa Rica 
(2011), and Nicaragua (2005) are used to predict popula-
tion flows between pairs of admin units across Mesoa-
merica. These data sets are subnationally representative 
census subsets, recording the first level administrative 
unit that individuals currently reside in, as well as their 
home first level administrative unit 5 years in the past if 
within the same country. These data are freely available 
online [29]. These data are used to calculate the propor-
tion of residents 5 years prior to the census who moved 
to each other unit, for each administrative unit, as an 
indicator of relative short-term population flow. Using 
proportions rather than actual flows avoids applying a 
model fit to the 5–10  % subsample that the microdata 

represent to the much larger population sizes of the 
entire population.

Mobile phone call record data
The mobile phone data set was provided by Digicel, the 
largest GSM mobile phone network operator in Haiti 
with 90  % coverage of inhabited areas across the coun-
try [12]. These data consist of anonymized data on all 
SIM cards that made at least one call, and record the last 
tower utilized by each user for each day between Septem-
ber 1, 2010 and December 1, 2010. The data included 2.2 
million subscribers (SIM cards) over the study period, 
during which 171 million call/text events were recorded. 
Therefore, there was an average of 59 days with call/text 
data for each SIM during the 90-day study period. Move-
ment patterns extracted from the data have previously 
been shown to correspond closely to movement patterns 
reported during the same period in a large-scale repre-
sentative household survey [30], suggesting that demo-
graphic biases in mobile phone ownership have a limited 
effect on observed movement patterns.

By comparing the locations of towers that routed a call 
or text with locations of towers used for the subsequent 
call or text over all users for the study period, this analysis 
calculates the proportion of individuals near one tower 
who transitioned to another per call/text event. Because 
the presented models use proportions of people who 
moved between geographical units rather than actual 
flows, it was not necessary to account for discrepancies 
in apparent population sizes caused by biased mobile 
phone ownership. Other biases may affect observed pat-
terns, however, such as spatial biases in call rates, which 
could affect apparent proportions of people who moved. 
Further analysis of this mobile phone data set and its pos-
sible biases is available in Additional file 1.

Logistic regression models
The presented logistic regression models predict propor-
tions of people from geographical unit i who moved to 
another j per time step. This proportion is calculated as 

Table 1 Coefficients for best fit logistic regression model using census microdata from El Salvador, Costa Rica, and Nica-
ragua

* Indicates statistical significance at p ≤ 0.05, ** Indicates significance at p ≤ 0.01, and *** Indicates significance at p < 0.001

Estimate Standard error Z score

Log (population at origin) 0.0098 0.010 0.98

Log (population at destination) 0.906 0.0098 92.81***

Log (distance between centroids) −0.306 0.011 −26.67***

Contiguity 0.878 0.014 62.90***

Proportion of population in urban areas, origin −0.221 0.038 −5.84***

Proportion of population in urban areas, destination 0.379 0.038 10.05***
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the number of people who moved from i to j in a given 
data set, migi,j, divided by the total number of people in 
the sample recorded within i, toti.

The included covariates are distance between adminis-
trative unit centroids (disti,j), whether or not the adminis-
trative unit pair is contiguous (contigi,j; a binary variable), 
total population (popi) and the proportion of people in 
urbanized areas (urbpropi) for both the origin and des-
tination administrative units. Total population was 
obtained from the WorldPop Project [31, 32], and pop-
ulation rasters for 2010 were combined with an urbani-
zation layer [33] to obtain the proportion of people in 
urbanized areas. These covariates are included because 
of their ability to predict intranational migratory move-
ments across numerous countries [16]. The basic model 
is shown below:

where βi indicates the coefficient for the covariate i. This 
model includes log of population size because population 
sizes are skewed with a few administrative units contain-
ing a large proportion of the population.

Haiti comparison
Movement patterns are initially compared between 
census microdata from Haiti with mobile phone data. 
Because the census data recorded movements between 
second-level administrative units (arrondissements), cell 
towers in the mobile phone data are aggregated to their 
respective arrondissements. Three arrondissements (out 
of 42) did not contain any mobile phone towers, and so 
excluded from these analyses.

From the mobile phone data, population flows between 
arrondissements (migi,j) is the number of times individu-
als utilized a tower in an arrondissement and then sub-
sequently used a tower in another, regardless of the time 
that elapsed between the two calls. A corresponding 
migi,j value in the census microdata is calculated as the 
number of people who lived in an arrondissement 5 years 
ago and had moved to another by the time of the census. 
Ranked flows are compared between admin units rather 
than the actual values because migration data categori-
cally underpredict short-term movement patterns [19].

Logistic regression models are also fit using both data 
sets, and comparing the directionality and magnitude of 
fitted coefficients ensures that movement is similar with 
respect to the covariates used throughout this study. 
To calculate migi,j

toti
 in the mobile phone data set, the total 

effective population for an arrondissement i (toti) is 
defined as the total number of days across all SIMs where 
the last recorded tower was in i. Ultimately, then, the 

migi,j

toti
= β0 + β1log(popi) + β2log(popj) + β3urbpropi

+ β4urbpropj + β5disti,j + β6contigi,j

proportion migi,j
toti

 corresponding to each arrondissement 
pair indicates the probability that a SIM in i subsequently 
moved to j by the following call/text event. In the census 
data, the corresponding proportions migi,j

toti
 is defined by 

dividing the number of people in arrondissement i that 
lived in another arrondissement j 5  years ago (migi,j) by 
the total population originally assigned to i 5  years ago 
(toti), reflecting probabilities of individuals moving on 
average.

As probabilities of an individual moving between geo-
graphical units is the outcome of interest in both the 
mobile phone data and the census data, these outcomes 
differ only in time period. For the mobile phone data, the 
relevant period for the transition probabilities is the aver-
age duration between call/text events, roughly 1.52 days, 
and for the census data, this period is 5 years.

Mesoamerica movement
Census data from El Salvador (2007), Costa Rica (2011), 
and Nicaragua (2005) are used to fit a logistic regression 
model that predicted connectivity across Mesoamerica. 
Only data on subnational movement was available, as the 
census data did not record origin first-level administra-
tive unit for international migrants. The model is identi-
cal to the model fit using the Haiti data, except it included 
country-level random effects during fitting to account for 
national differences in movement. Only the fixed effects 
are used to predict proportions of people that moved 
per 5  years between all possible first-level admin unit 
pairs (both within and between countries) across Mes-
oamerica. Using the proportions of people predicted to 
move between administrative units, population flows are 
obtained by multiplying proportion with the total popu-
lation in the origin admin unit (generated by summing a 
population raster obtained from the WorldPop project 
[31, 32] per administrative unit).

Applying this model to administrative unit pairs in dif-
ferent countries assumes that country borders are com-
pletely porous, as the model is fit using only subnational 
migration. As this is an unrealistic assumption, predicted 
international migratory movements are scaled using an 
existing data set on predicted international migration 
[15]. This data set comprehensively predicts crossborder 
migration between all countries nationally on the same 
timescale as the census microdata (per 5  years). While 
bilateral migration flows can be difficult to obtain using 
census information as statistical agencies do not neces-
sarily collect migration data in a comparable way, this 
data set is predicted using population stock data, which 
are more widely available and easier to measure across 
countries [15]. This adjustment rescales all movements 
from one country to another such that net flow between 
the countries matched the international predictions. 
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Therefore, the results assume that while relative patterns 
of international and subnational movement are identical 
in the context of model covariates, international move-
ment is considerably rarer than subnational movement.

To predict the relative flows of people infected with 
malaria (either Plasmodium falciparum or Plasmodium 
vivax), predicted population flows are scaled using esti-
mates of malaria incidence across Mesoamerica from a 
data set provided by the Pan American Health Organiza-
tion. These data record the number of people diagnosed 
with either Pf or Pv malaria per month at health facilities 
across Mesoamerica for 2013, aggregated to second-level 
administrative units. Annual incidence estimates at the 
appropriate spatial scale are calculated by averaging inci-
dence across each first-level admin unit in a population-
weighted manner using population estimates from the 
WorldPop Project [32].

Predicted flows of infected people is then the product 
of these first-level administrative unit incidence esti-
mates and predicted population flows. This relationship 
between incidence and flow of infected people assumes 
that transmission intensity in an area correlates linearly 
with the proportion of emigrants that are infected, which 
is reasonable in low transmission settings when multiple 
infection is rare [34] such as Mesoamerica.

Community structure
After predicting flows of infected individuals across Mes-
oamerica, groups of admin units most closely linked are 
defined using a walktrap community detection algorithm 
[35]. This algorithm iteratively places random walkers 
at various administrative units, and the probability of a 
walker moving to other administrative unit depends on 
predicted flow between those administrative units. This 
algorithm is able to utilize weighted graphs (or edges 
with associated non-binary values, such as the predicted 
flow values in this example), but requires a symmetrized 
adjacency matrix, therefore defined between admin unit i 
and j as predicted total flow (migi,j) between the two units 
in either direction.

Over many iterations, random walkers will tend to 
travel to administrative units within the same community, 
and this algorithm defines subcommunity membership in 
a “bottom-up” way using random walker locations. All 
administrative units are initially in independent subcom-
munities, and the two subcommunities most often visited 
by the same random walker are merged iteratively until 
the difference between movement within and between 
subcommunities is maximized (represented by a modu-
larity score, Q [35, 36]). By maximizing the difference in 
movement when comparing between and within sub-
community movement, this algorithm defines the best 
partitioning of administrative units across the region.

The resulting partitioning then represents groups of 
administrative units (or subcommunities) that infected 
people are most likely to pass between during travel. 
Coordination of effort across administrative units in 
the same subcommunity minimizes importation risk, as 
coordination can prevent areas lacking active interven-
tion effort from becoming sources of infected people for 
the subcommunity at-large.

Overall movement of infected people
Flows of infected people are also used to define major 
exporters and importers of infected people. Quantifying 
exportation and importation rates can help target elimi-
nation efforts, as net exporters are disproportionately 
important for overall malaria persistence [37]. As expor-
tation and importation rates are defined independently, a 
unit can be both a top exporter and importer. An admin-
istrative unit’s relative role as an exporter or importer is 
then the net number of infected people expected to leave 
or enter each administrative unit per 5  years through 
migration-related movement, ranked against all other 
administrative units. Presenting exportation and impor-
tation rate ranks as opposed to the absolute values of 
predicted exportation and importation accounts for the 
significant underprediction of short-term movement in 
flows predicted using migratory flows over 5 years.

Figure 4 shows the overall probability of an individual 
moving from each administrative unit, showing possible 
individual-level movement rather than population-level 
predictions of overall flow.

Costa Rica migration
The final country-specific discussion demonstrates how 
these analyses can inform malaria elimination policy 
in a particular country. Census data from Costa Rica in 
2011 (obtained from the Instituto Nacional de Estadís-
tica y Censos) are used for these analyses rather than the 
IPUMSI data to map movement in Costa Rica. The cen-
sus data set has more detailed information on the origin 
of international migrants (though this information was 
still at the country-level rather than first-level adminis-
trative unit-level) and apply countrywide without neces-
sitating an underlying logistic regression model. Relative 
levels of imported malaria expected to reach each prov-
ince are estimated using these flows.

Results and discussion
Haiti comparison and limitations
Ranked flows between all pairs of districts in Haiti cor-
relate well between the mobile phone and the census data 
(R2 = 0.69; Fig. 1), a stronger correlation than observed 
in previous studies that compared mobile phone and cen-
sus data [19]. The logistic regression model also yields 
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similar results when fit to both data sets (Fig. 2), suggest-
ing it predicts circulatory movement patterns well with 
respect to the model covariates used.

Though this result suggests that the census microdata 
exhibit similar patterns to the mobile phone data, the 
mobile phone data do not necessarily represent a com-
plete, unbiased picture of short-term movement. Mobile 
phone ownership is known to be demographically biased, 
and while movement patterns have been shown to be 
robust to income-based biases in the data [20], certain 
populations such as undocumented migrants or roaming 
international travellers may not be represented in these 
data. Further, biases may still exist in the calculated tran-
sition probabilities and flows due to more or less frequent 
mobile phone use during travel, which has been docu-
mented previously [38]. Additional file 1 contains analy-
ses regarding some of these possible biases.

Mesoamerica movement
Migration in the census microdata is significantly posi-
tively correlated with urbanization in the destination 
administrative unit, population size in the destination, 
and negatively correlated with distance and urbanization 
in the origin admin unit (Table 1), implying that people 
tend to move to closer, more highly populated, and highly 
urbanized areas, while tending not to leave highly urban-
ized areas. These results are generally similar to the Haiti 
models (Fig.  2), though these models indicate a higher 

Fig. 1 Ranked pairwise movement in the census microdata and the 
mobile phone data. Calculated R2 between these rankings was 0.69. 
The IPUMS microdata originate from Haiti in 2003, while the mobile 
phone data originate from Haiti in 2010. Observations falling at rank 
1150 in the IPUMS data represent pairs where no migration occurred

Fig. 2 Logistic regression model coefficients after fitting with mobile phone and IPUMS census microdata. Red dots indicate coefficients from 
mobile phone data‑derived model, and black indicate coefficients from census‑derived model with corresponding 95 % confidence intervals
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probability of moving out of highly urbanized areas, 
rather than lower, as in the Mesoamerica census micro-
data). This difference may reflect unusually high rates of 
movement out of Port-au-Prince in Haiti in the aftermath 
of the 2010 earthquake captured in the CDR data [30], 
or may reflect spatial biases in the CDR data. This over-
all similarity between the Haiti and Mesoamerica mod-
els is relevant for applicability of the validation exercise. 
Had the models differed dramatically, the validation of 
movement throughout Haiti may not have applied to the 
fundamentally different patterns found in Mesoamerica. 
Though the models were broadly similar, this remains a 
possible concern, and mobile phone data from Mesoa-
merica should be used in the future to validate the Mes-
oamerican census data-derived movement patterns.

Figure 3 shows regional movement across Mesoamer-
ica obtained once scaled using data from Abel and Sander 
[15], while Fig.  4 shows the probabilities that underlie 
these predictions, as the net probability of leaving each 
administrative unit over 5 years. The probabilities shown 
in Fig.  4 include the crossborder scaling, accomplished 
by dividing flows by the total population in the origin 
administrative unit to yield scaled probabilities.

Figure  4 shows probability of leaving an administra-
tive unit i, calculated as one minus the probability of not 
leaving to go to all other possible administrative units, 

or 1−
∏n

j=1,i �=j (1− pi,j) where pi,j is the predicted prob-
ability of travelling from i to j. Rather than reflecting pre-
dicted net flows, then, Fig. 4 identifies the administrative 
units where infected people might be most likely to travel 
elsewhere, carrying infection with them.

Combining Fig.  3 with PAHO incidence data, Fig.  5 
depicts net flows of infected people and Fig.  6 shows 
areas that act as major exporters or importers of infected 
people. This visualization is particularly policy-relevant, 
as reducing transmission in major exporters of infected 
people is likely to reduce burden in other areas. Trans-
mission reduction in exporting areas can be achieved by 
targeting mosquito populations, through interventions 
such as vector control and insecticide-treated net distri-
butions, or through interventions that target the infec-
tious reservoir in humans, including active case detection 
and strengthened treatment programmes. Areas that are 
both major exporters and importers are also important 
targets, as they act as conduits of infected people, and 
would particularly benefit from active detection of infec-
tion in travellers.

Figure 7 shows optimal partitioning of the region into 
geographic subcommunities using these flows, show-
ing that while most countries are relatively isolated and 
form independent subcommunities, Nicaragua and Costa 
Rica share a subcommunity, as do Belize and Guatemala. 

Fig. 3 Predicted migratory flow (per 5 years) between first‑level administrative units across Mesoamerica. These population flows are generated 
from a logistic regression model fit using census data and scaled using crossborder predictions from Abel and Sander [15]
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Fig. 4 Overall predicted probability of a resident leaving each administrative unit over 5 years. Crossborder probabilities scaled using Abel and 
Sander [15]

Fig. 5 Predicted flows of infected people (red). These estimates are created using population flow estimates from Fig. 1 and scaling using incidence 
from 2013 in the origin location (shown in blue)
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Taken alone, this analysis emphasizes international coor-
dination of elimination efforts along particular national 
boundaries. The shared community membership of Nica-
ragua and Costa Rica, for example, suggests that if Costa 
Rica reduces transmission below replacement levels 
within its borders, malaria may persist due to importa-
tion from Nicaragua. Combined with Figs. 5 and 6, this 
analysis highlights northern Nicaragua as a particularly 
important exporter of infected people across multiple 
countries, as relatively many people are expected to flow 
into Costa Rica from this area (darker red lines; Fig. 5), 
and it also likely is a major exporter of cases into El Sal-
vador (Fig. 7).

Costa Rica migration
Combining the Costa Rica census data with the PAHO 
incidence estimates, importation rates of infected peo-
ple (from international and intranational sources) are 
calculated for province in Costa Rica. By comparing 
observed incidence across the country with the expected 
rates of importation, it is possible to determine the 
provinces most likely to sustain local transmission and 
the provinces likely to experience proportionally more 
importation. Figure  8 shows the expected relative rates 
of immigration of infected people against observed pat-
terns of malaria burden. This is relevant for surveillance, 
as while Limon has the highest observed incidence, it 
receives very few infected migrants, implying that local 
transmission rather than importation may be the main 
source of infection. In contrast, Alajuela experienced 

relatively few cases from 2008 to 2010 but is expected 
to experience relatively high levels of immigration of 
infected people, suggesting that cases may be imported 
from elsewhere and that less transmission may be occur-
ring within the province. These results justify extending 
malaria diagnosis and treatment to highly mobile popula-
tions (particularly undocumented migrants) in provinces 
where international-specific importation is high, and by 
justifying potential active case detection in travellers in 
areas with high overall importation risk.

Census‑derived model limitations
While this study agrees with previous work in showing 
that migration data are useful for predicting malaria par-
asite movement [19], using these data to model parasite 
mobility carries assumptions and limitations that should 
be addressed by future research. In particular, while the 
movement model is deliberately simple for generaliza-
tion across Mesoamerica, this simplicity also means the 
model cannot capture complex patterns of human move-
ment, and does not reflect individual-level heterogenei-
ties observed between people that are critically important 
for malaria elimination [39]. Travellers being potentially 
at higher risk or lower risk of malaria further muddles 
the relationship between parasite prevalence in travel-
lers and overall incidence. Because of these unaccounted 
heterogeneities, the export/import predictions are 
highly uncertain, relying instead on a linear relationship 
between incidence and proportion of travellers infected 
and travellers moving identically to the population at 

Fig. 6 Top 15 exporters and importers of malaria‑infected individuals throughout the region
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large. In particular, then, the lack of information on a 
possible correlation between movement and infection 
risk represents a key limitation common to both the 
mobile phone and census data, as neither data set records 
individual-level risk. Future studies mapping parasite 
mobility could account for this by using appropriate data, 
such as travel history surveys from health clinics to infer 
possible correlation in infection risk and movement. By 
modelling demographic-specific subgroups and under-
standing how demography influences disease-risk and 
movement, future work can refine these predictions.

Further, in modelling cross-border movement, this 
analysis assumes that cross-border movement patterns 
are identical to intranational movement (though are 
much rarer), which may not reflect actual differences 
in processes that drive international movement. While 
cross-border movement information was available in the 
census microdata, this information was only at the coun-
try level, and therefore did not provide any additional 

information for quantifying whether movement between 
first-level administrative units differed internationally 
and subnationally. Other studies suggest that interna-
tional migratory patterns differ significantly from intra-
national migration [17], underscoring the importance 
of future work including country-specific international 
movement information. For Mesoamerica, the highly 
porous nature of national borders regionally [40] suggests 
that cross-border movement may be less restricted than 
in other regions, and therefore potentially more similar 
to intranational movement.

Even if these microdata captured more information 
on migrant origin, they may miss populations at-risk of 
malaria and possible mediators of parasite movement, 
such as highly mobile indigenous populations. Some such 
at-risk populations include those within the Mosquitia, 
an indigenously populated region, which includes a rela-
tively porous border between Honduras and Nicaragua, 
or the Darien in Panama where Guna communities often 

Fig. 7 Community structure of infected people throughout Mesoamerica. Community structure is defined using a walktrap community detection 
algorithm. Colours denote administrative units belonging to the same subcommunity
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migrate to and from Colombia [41]. More comprehensive 
household surveys and travel history surveys can account 
for this, as they often record both international and sub-
national movement in a spatially granular way and can 
be targeted to reach underserved populations. Future 
data obtained from mobile network operators could also 
inform international movement patterns, as international 
movement could be tracked using information such as 
handset identifier codes, which could link records from 
network operators in different countries.

Despite these uncertainties, maps of parasite flows and 
importation created using migration data will be impor-
tant for malaria elimination efforts regionally and on a 
country-specific basis, as they succinctly present com-
plex movement processes in a general, policy-relevant 
way. The metrics shown here can inform distinctly differ-
ent aspects of elimination. For example, understanding 
areas that are exporters of infected people, such as north-
ern Nicaragua and eastern Honduras, can help target 
intervention campaigns. If targeted treatment and vector 
control programmes reduce transmission in these areas, 
burden will decline across the larger landscape. On the 
other hand, drawing community structures can inform 
coordination efforts between areas, such as between 
Costa Rica and Nicaragua, to minimize reintroduction 
risk (Fig.  6), and can help predict where importation is 
most likely to occur. This inference can inform imple-
mentation of policies geared towards providing case 
management and diagnosis for highly mobile populations 
within the country and active case detection in travel-
lers (Fig. 7). The results of this work can be used in other 

settings, as Additional files 2 and 3 contains the output 
data for public use, Table  1 contains the fitted model 
parameters, and the associated IPUMS census microdata 
are available upon request [29]. By guiding surveillance 
and intervention resources towards the areas where they 
are most useful, analyses similar to those presented in 
this study can help achieve malaria elimination in a cost-
effective way.

Conclusions
Interactions between mobile human populations and 
spatially heterogeneous landscapes of malaria transmis-
sion lead to complex spatiotemporal disease dynamics 
[8, 9]. These complex disease dynamics are important for 
elimination, as they drive importation and resurgence 
even in post-elimination settings [5, 6]. This study pre-
sents maps of parasite connectivity for Mesoamerica, 
predicted using data on incidence and human population 
movement.

The presented analyses show that census-derived 
movement patterns are a reasonable proxy for relative 
flows observed in short-term circulatory movement 
(Figs. 1, 2), matching existing research [19], though sig-
nificant assumptions and uncertainties remain to be 
addressed by future research. Ultimately, malaria risk and 
burden are driven by both human movement and trans-
mission through highly interactive processes [8]. Under-
standing how both impact parasite dynamics and flows 
will be a critical step for defining effective intervention 
packages in different areas and informing overall elimina-
tion strategy.

Fig. 8 Migration and incidence throughout Costa Rica. Left Expected immigration of infected people into each province in Costa Rica. Migration 
rates are calculated by scaling migration from each origin with incidence in that origin, using PAHO incidence data from 2013 to define both intra‑ 
and international movement of infected people. Right Ranked incidence across Costa Rica, from PAHO data
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