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Abstract – It has been recently proposed that natural connectivity can be used to efficiently char-
acterize the robustness of complex networks. The natural connectivity has an intuitive physical
meaning and a simple mathematical formulation, which corresponds to an average eigenvalue cal-
culated from the graph spectrum. However, as a network model close to the real-world system that
widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this
article, we investigate the approximation of natural connectivity based on the largest eigenvalue in
both random and correlated scale-free networks. It is demonstrated that the natural connectivity
of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymp-
totically and analytically to approximate natural connectivity with small errors. Then we show
that the natural connectivity of random scale-free networks increases linearly with the average
degree given the scaling exponent and decreases monotonically with the scaling exponent given
the average degree. Moreover, it is found that, given the degree distribution, the more assortative
a scale-free network is, the more robust it is. Experiments in real networks validate our methods
and results.

Copyright c© EPLA, 2016

Introduction. – Many systems in the real world can
be described as complex networks. The investigation of
complex networks has recently become one of the most
popular topics in interdisciplinary area [1–3]. In particu-
lar, robustness, i.e., the ability of a network to maintain
its connectivity when a fraction of its vertices is damaged,
is a key aspect of the performance of such networks and
has received increasing attention [4–8].

Simple and effective measures are essential for the study
of network robustness. A variety of measures, based on
different heuristics, have been introduced to quantify the
robustness of networks. For example, the vertex (edge)
connectivity of a graph, as an important and probably
the earliest measure of network robustness [9]. However,
it may partially reflect the ability of graphs to retain con-
nectedness after vertexes (or edges) deletion. Besides,
another remarkable measure used to characterize the ro-
bustness of a network is the second smallest (first non-
zero) eigenvalue of the Laplacian matrix, also known as
the algebraic connectivity. Fiedler [10] showed that the
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magnitude of the algebraic connectivity reflects how well
the overall graph is connected, i.e., the larger the algebraic
connectivity is, the more difficult it is to cut a graph into
independent components. However, the algebraic connec-
tivity is equal to zero for all disconnected networks making
it too coarse as a measure of robustness. An alternative
formulation of robustness within the context of complex
networks emerged from random graph theory and was
stimulated by the work of Albert et al. [4]. They proposed
a statistical method to characterize the robustness of com-
plex networks instead of a strict external property. In a
recent work, Schneider [11] proposed a new measure R,
which considers not only the critical removal fraction when
the network is collapsed, but also the size of the largest
connected cluster during the malicious attack. Although
the critical removal fraction can be obtained analytically
for some special networks [12–16], generally this measure
can only be calculated through costly simulations.

In our previous works [17,18], the concept of natu-
ral connectivity was proposed as a spectral measure of
structural robustness in complex networks. Based on the
Estrada index of a graph [19,20], the natural connectivity
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is applied here to characterize the robustness of the net-
work which has been used in several contexts of graph
theory. Compared with those measures discussed above,
the natural connectivity has an intuitive physical meaning
and a simple mathematical formulation. Hence, the natu-
ral connectivity we provided sets up a bridge between the
graph spectrum and the robustness of complex networks
and has received growing attention in applications [21–23].

We have studied the natural connectivity of regular ring
lattices and random graphs in refs. [24,25], respectively.
Here, we focus on the natural connectivity of scale-free
networks with power-law degree distributions p(k) ∼ k−γ ,
which exists in the real world extensively. In the past
decade, the ubiquity of scale-free networks has received
growing attention. Examples of scale-free networks in-
clude the Internet, social networks, or biological networks.
Although there are some research results about the spec-
trum of scale-free networks, so far we still cannot obtain
all the exact eigenvalues of scale-free networks analytically.
In this article, we will address the approximation problem
of natural connectivity in scale-free networks.

The definition of natural connectivity. – A com-
plex network can be described as a simple undirected
graph G = (V, E), where V is the set of vertices, and
E ⊆ V × V is the set of edges. Let N = |V | and
W = |E| be the number of vertices and the number of
edges, respectively. Let di be the degree of node vi, m
the minimum degree and M the maximum degree of G.
Let p (k) (m ≤ k ≤ M) be the degree distribution. If the
degree distribution follows a power law, i.e., p (k) ∼ k−γ ,
G is called a scale-free network with scaling exponent γ.
We focus on scale-free networks in this study due to their
ubiquity. The connectivity of the graph G can be rep-
resented by the adjacency matrix A (G) = (aij)N×N ,
where aij = aji = 1 if vertex vi and vj are adjacent,
otherwise aij = aji = 0. It follows immediately that
A (G) is a real symmetric matrix with real eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λN , which are usually called the eigen-
values of the graph G itself. The set {λ1, λ2, . . . , λN} is
called the spectrum of G.

The natural connectivity of G is defined as follows [17]

λ̄ = ln

(

S

N

)

= ln

(

1

N

N
∑

i=1

eλi

)

, (1)

which corresponds to an average eigenvalue of the graph
adjacency matrix. It characterizes the redundancy of al-
ternative paths by quantifying the weighted number of
closed walks of all lengths.

Approximation of natural connectivity in ran-

dom scale-free networks. – There are some research
results about the spectrum of scale-free networks, how-
ever, we still can not obtain all the exact eigenvalues of
scale-free networks analytically. Here, we first consider
the approximation expression of natural connectivity in

Fig. 1: (Colour online) The histograms of eigenvalues of ran-
dom scale-free networks with various γ and 〈k〉, where N =
1000. The spectral gap between the two largest eigenvalues
is also shown. We also do the experiments in networks with
different sizes and observe the same phenomenon.

random scale-free networks, in which nodes are connected
randomly given a power-law degree distribution.

Using the extended random graph model with described
in ref. [26], we generate random scale-free networks with
a given expected degree sequence w1 ≥ w2 ≥ . . . ≥ wN ,
where wi = ci−1/(γ−1), γ > 2. Here c can be determined
by the minimum expected degree m = wN = cN−1/(γ−1),
then we obtain that c = mN1/(γ−1). It also follows that
the maximum expected degree M = w1 = mN1/(γ−1).
It is easy to verify that the degree distribution is p(k) =
(γ − 1)mγ−1k−γ(m ≤ k ≤ M) and the average expected
degree is 〈k〉 = m(γ − 1)/(γ − 2) [27].

To explore the graph spectrum of scale-free networks,
we show the histograms of eigenvalues of random scale-
free networks with various scale exponents in fig. 1. It can
be observed that, aside from the largest eigenvalue, all
the other eigenvalues are contained in the bulk part of the
spectrum. It means that there exists an evident spectral
gap between the largest eigenvalue and the second largest
eigenvalue [28]. The large spectral gap leads to the fact
eλ1 ≫ eλ2 ≥ . . . eλN . Hence, we consider the following
approximation of the natural connectivity of random scale-
free networks based on the largest eigenvalue:

λ̄ =

(

N
∑

i=1

eλi/N

)

= ln

[(

N
∑

i=2

eλi + eλ1

)

/

N

]

≈ λ1 − lnN ≡ λ̄(I).

(2)

On the largest eigenvalues λ1 of random scale-free net-
works, there are very few exact analytical results. In
ref. [29], Chung et al. proved that if d̃ >

√
M lnN , it

is almost sure that λ1 = d̃; if
√

M > d̃ln2N , it is almost
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λ̄ ≈ d̃ − ln N
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≡ λ̄(III).

(10)

Fig. 2: (Colour online) The ratio between d̃ and
√

M . The solid
line represents the boundary condition d̃ =

√
M ln(N). The

dashed line represents the boundary condition
√

M = d̃ln2(N).
The network size N = 1000. We also do the experiments in net-
works with different sizes and observe the same phenomenon.

sure that λ1 =
√

M , where d̃ = 〈k2〉/〈k〉 represents the
second-order average expected degree. We remark that
both the conditions d̃ >

√
M lnN and

√
M > d̃ln2N are

actually very harsh, because in most cases the two values
of d̃ and

√
M are not far apart as shown in fig. 2. Thus

the two conditions are very difficult to be satisfied.

In fig. 3, we show d̃ and
√

M along with the largest
eigenvalues λ1 as a function of the scaling exponent γ with
different average expected degree 〈k〉. We find that the
largest eigenvalues λ1 can be well estimated by d̃ rather
than

√
M , especially if γ ≥ 3. The observation leads us

to consider using d̃ to approximate the largest eigenvalues
λ1. Then we obtain that

λ̄ ≈ λ1 − lnN ≈ d̃ − lnN ≡ λ̄(II). (3)

Now we derive d̃ analytically.
When γ > 3, we can obtain

d̃ =
〈k2〉
〈k〉 = m

γ − 2

γ − 3

N
3−γ

γ−1 − 1

N
2−γ
γ−1 − 1

. (4)

Note that N
3−γ

γ−1 → 0 and N
2−γ

γ−1 → 0 when N → ∞. Thus,
we can simplify eq. (4) as

d̃ =
〈k2〉
〈k〉 ≈ m

γ − 2

γ − 3
= 〈k〉 (γ − 2)2

(γ − 1)(γ − 3)
. (5)

γ

λ1

γ

λ1

γ

λ1

d̃
√

M

λ1

< k >= 10 < k >= 15 < k >= 20

Fig. 3: (Colour online) Approximate estimations of the largest
eigenvalues λ1 of random scale-free networks using the second-
order average expected degree d̃ and the square root of max-
imum expected degree

√
M , respectively. The network size

N = 1000. We also do the experiments in networks with dif-
ferent sizes and observe the same phenomenon.

When γ = 3, we can obtain

d̃ =
〈k2〉
〈k〉 = m

lnN

2(1 − N−1/2)
. (6)

Note that N−1/2 → 0 when N → ∞, thus we can simplify
eq. (6) as

d̃ = m
lnN

2(1 − N−1/2)
≈ m

lnN

2
= 〈k〉 ln N

4
. (7)

When 2 < γ < 3, we can obtain

d̃ =
〈k2〉
〈k〉 = m

γ − 2

γ − 3

N
3−γ

γ−1 − 1

N
2−γ

γ−1 − 1
. (8)

Note that N
2−γ
γ−1 → 0 when N → ∞, thus we can simplify

eq. (8) as

d̃ ≈ m
γ − 2

3 − γ
N

3−γ
γ−1 = 〈k〉 (γ − 2)2

(γ − 1)(3 − γ)
N

3−γ
γ−1 . (9)

Consequently, we obtain the asymptotic analytical ex-
pression of the natural connectivity of scale-free networks
as follows:

see eq. (10) above

It is shown in fig. 4 that the exact natural connectivity
λ̄ of random scale-free networks along with our approxi-
mations discussed above. We find that λ̄ can be estimated
by λ̄(I) very well for various scaling exponents. In other
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γ γ γ

λ̄

λ̄(I)

λ̄(II)

λ̄(III)

< k >= 10 < k >= 15 < k >= 20

Fig. 4: (Colour online) Natural connectivity of random scale-
free networks estimated by λ̄(I) in eq. (2), λ̄(II) in eq. (3), and
λ̄(III) in eq. (10) as a function of various exponents γ with dif-
ferent 〈k〉. The lines represent the exact natural connectivity
in eq. (1) and the symbols represent our approximations. The
network size N = 1000. We also do the experiments in net-
works with different sizes and observe the same phenomenon.

Fig. 5: (Colour online) Natural connectivity of random scale-
free networks as a function of average expected degree (a) and
scaling exponent (b) based on λ̄(III), where N = 1000.

words, the natural connectivity can be dominated by the
largest eigenvalue in these cases. Besides, when γ ≥ 3, it
can be estimated by λ̄(II) and λ̄(III) with small errors.

Moreover, the mathematical expressions in eq. (10)
enable us to easily explore the dependence of the robust-
ness of random scale-free networks on the average expected
degree 〈k〉 and scaling exponent γ. In fig. 5, we show the
natural connectivity estimated by λ̄(III) as a function of
the average expected degree 〈k〉 and scaling exponent γ,
respectively. We find that, given scaling exponent γ, the
robustness of random scale-free network is found to in-
crease linearly with average expected degree 〈k〉; given
average expected degree 〈k〉, the robustness of random
scale-free network decreases with scaling exponent γ.

Approximation of natural connectivity in corre-

lated scale-free networks. – We have discussed the
approximation of natural connectivity in random scale-
free network. However, many networks in real-world show
“assortative mixing” on their degree, i.e., high-degree ver-
tices associate preferentially with other high-degree ver-
tices; or “disassortative mixing”, i.e., high vertices prefer
to attach to low-degree ones. Both situations are defined
as degree-degree correlation [30]. It has been shown that
the degree correlation can have a substantial effect on the
behaviors of networks.

Fig. 6: (Colour online) The degree correlation coefficient
r in correlated scale-free networks generated by assortative
rewirings (a) and disassortative rewirings (b). The original ran-
dom scale-free networks are generated using the BA model with
various parameters m0 and m. The network size N = 1000.

Fig. 7: (Colour online) The natural connectivity as a function
of rewiring operation steps in assortative scale-free networks (a)
and disassortative scale-free networks (b). The original net-
work is the same network as in fig. 5. The lines represent the
exact natural connectivity in eq. (1) and the symbols represent
our approximation λ̄(I).

We utilize an edge rewiring operation to change the net-
work degree correlation while keeping its degree sequence
and global connectivity constant. We first generate ran-
dom scale-free networks using the BA model [31], and
then generate correlated scale-free networks utilizing the
assortative edge rewiring and disassortative edge rewiring
while keeping its degree distribution.

In fig. 6, the degree correlation coefficient r [30] is shown
as a function of the rewiring operation steps. In fig. 6(a),
we observe that the degree correlation coefficient r in-
creases with the assortative rewiring operation steps n,
which means that the network tends to be more assor-
tative. While in fig. 6(b), it is shown that the degree
correlation coefficient r decreases with the disassortative
rewiring operation steps n, which suggests that the net-
work tends to be more disassortative. We show in fig. 7
the exact natural connectivity λ̄ along with the approxi-
mation λ̄(I) in eq. (2). We find that our approximations
λ̄(I) agree well with the exact values λ̄. Moreover, fig. 7
shows that the natural connectivity of scale-free network
increases with the assortative rewiring operation steps n
and decreases with disassortative rewiring operation steps
n. The results suggest that, given the degree distribution,
the more assortative the scale-free network is, the more
robust it is.
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Table 1: Basic statistics of real networks. V and E are the number of nodes and links. 〈k〉 is the average degree. C is the
clustering coefficient. 〈l〉 is the average shortest distance. r is the assortativity.

Networks V E 〈k〉 C l r

Email 1133 5451 9.6 0.166 3.65 0.078
DBLP 12591 49743 7.9 0.062 4.42 −0.045
USairports 1574 28236 21.87 0.384 3.14 −0.113
Proteins 2239 6452 5.76 0.007 3.98 −0.33
Advogato 6541 51127 12.62 0.092 3.29 −0.095
Routeviews 6474 13895 4.29 0.009 3.67 −0.182
Linux 30837 230213 7.47 0.002 3.3 −0.174
Lexicon 1773 9131 10.3 0.163 3.38 −0.048
PB 1222 16714 27.36 0.36 2.74 −0.221

Fig. 8: (Colour online) The natural connectivity of nine real-
world networks based on λ̄(I)(a) and λ̄(II)(b). The horizon-
tal axis is the exact natural connectivity λ̄ and the vertical
axis is its approximation. Different symbol represents different
network.

Experiments in real-world networks. – Many sys-
tems taking the form of networks in the real-world,
are more complicated than the synthetic networks. To
validate our methods and results, we investigate the
approximation of natural connectivity in various real-
world scale-free networks: an email network (Email),
the citation network (DBLP) extracted from a database
of scientific publications such as papers and books, the
network of flights between US airports in 2010 (USair-
ports), the interactions between proteins in Humans (Pro-
teins), an online community platform (Advogato), the
network of autonomous systems of the Internet (Route-
views), the network of Linux source code files (Linux),
the lexical network containing nouns including places
and names of the King James Bible and information
about their occurrences (Lexicon) and the U.S. political
blogs (PB) network. All the data can be downloaded
from http://konect.uni-koblenz.de/. Basic statistics
of these networks are shown in table 1.

We show in fig. 8 the exact natural connectivity and the
approximations for these real-world networks. In fig. 8(a),
it is observed that all the symbols are arranged along the
diagonal line. It means that the exact natural connectivity
λ̄ can be estimated by λ̄(I) very well in these real-world

networks. In fig. 8(b), we find that the approximation λ̄(II)

based on the random scale-free network model is not as
good as λ̄(I) and some symbols deviate significantly from
the diagonal line. The deviation comes from two aspects.
On the one hand, it may come from the approximation
errors; on the other hand, it can be explained by the fact
that the real networks are more complex than random
networks and then the random scale-free model may not
characterize them properly.

Conclusions. – In this letter, we have investigated the
approximation problem of natural connectivity, which is
introduced as a spectral measure of network robustness,
in scale-free networks. Based on the observation that the
spectrum of scale-free networks has a large gap between
the largest eigenvalue and the bulk part of the spectrum,
it has been demonstrated that the natural connectivity of
scale-free network is dominated by the largest eigenvalue
in both random and correlated scale-free networks. The
largest eigenvalue of a network, as a key factor, plays an
important role in describing the topological and dynami-
cal characteristics of networks [32–34]. For example, it is
shown that the epidemic threshold for a network is closely
related to the largest eigenvalue of its adjacency matrix
in epidemic spreading [35]. The link between robustness
and largest eigenvalue is of great theoretical and practical
significance in network analysis, as it opens possibilities to
connect robustness to other network structural or dynami-
cal properties such as efficiency, synchronization, epidemic
spreading, and search ability.

We have presented an approximate analytical expres-
sions of the natural connectivity of random scale-free
networks. The proposed approximation agrees with the
numerical results well when γ ≥ 3. Based on the approx-
imate analytical expression, we have explored the robust-
ness of random scale-free networks and we have found that
it increases linearly with the average degree given the scal-
ing exponent and decreases monotonically with the scal-
ing exponent given the average degree. Moreover, we have
shown that, given the degree distribution, the more assor-
tative the scale-free network is, the more robust the scale-
free network is. Experiments in real networks validate our
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methods and results. Our results can be of potential sig-
nificance for network robustness design and optimization.
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