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1. Introduction

Hidden or difficult-to-reach populations, such as injecting drug users, men who have sex with
men and sex workers, are generally difficult to access because of their strong privacy con-
cerns and a lack of a well-defined sampling frame from which a random sample can be drawn
(Heckathorn, 1997). Sampling frames are also lacking for many groups without strong privacy
concerns, such as jazz musicians (Heckathorn and Jeffri, 2001). Methods for obtaining infor-
mation about such groups have involved contacting especially knowledgeable people within
the group, which is known as key informant sampling (Deaux and Callaghan, 1985), targeted
sampling where participants are recruited from locations where group members are known to
pass (Watters and Biernacki, 1989) or snowball sampling where members of a group are asked
to give the researchers contact details of others in the same group (Erickson, 1979). However,
these methods all introduce a considerable selection bias, which impairs generalization of the
findings from the sample to the population studied (Heckathorn, 1997; Magnani et al., 2005).

Respondent-driven sampling (RDS) is a method which was developed to overcome the chal-
lenges of selection bias when sampling hidden populations (Heckathorn, 1997, 2002; Salganik
and Heckathorn, 2004; Salganik, 2006; Volz and Heckathorn, 2008). An RDS study starts out
by purposively selecting some participants who are members of the study population (usually
5–15). These people are called ‘seeds’. The seeds are given a number of invitation coupons (usu-
ally 3) to distribute to friends and acquaintances within the study population. If those friends
who receive a coupon decide to participate, they are in turn given the same number of coupons
to invite further participants. Participants are rewarded for their personal participation in the
study, as well as for each peer they invite and who also participates. The invitation coupon con-
tains a serial number that enables the researchers to follow the recruitment chains in the sample.
If the recruitment chains are sufficiently long, the sample composition stabilizes and becomes
independent of the characteristics of the seeds. Additionally, each participant is asked for the
number of people he or she knows within the study population, known as his or her ‘personal
network size’ or ‘degree’. The degree of a participant is important to collect as participants with
large degrees are oversampled and participants with small degrees are undersampled. Knowing
the degree of each participant hence allows adjustment for this bias.

When the sample has been collected, the proportion of people with the characteristic A in the
population can be estimated by the updated RDS estimator RDSII (Volz and Heckathorn, 2008):

P̂A = ∑
i∈A∩S

d−1
i

/ ∑
i∈S

d−1
i .1/

where di is the degree of individual i, and S the set of sampled individuals.
Volz and Heckathorn (2008) proved that RDSII provides asymptotically unbiased estimates

if the following assumptions are fulfilled.

(a) Reciprocity: individuals in the studied population maintain and recruit peers through
reciprocal relationships, i.e. the network within which recruitment happens is undirected.

(b) Connectedness: each individual in the population studied has a chance of being invited
to participate, i.e. the network forms a single component.

(c) Sampling is with replacement: individuals are allowed to be recruited into the sample
more than once.

(d) Degree: respondents can accurately report their degree in the network.
(e) Random recruitment: peer recruitment is a random selection from the respondents’ per-

sonal network.
(f) Each respondent recruits a single peer, i.e. the number of recruitment coupons is 1.
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The ability to produce population estimates and a feasible field implementation have contrib-
uted to a rapid increase in RDS studies conducted globally in recent years. To date, well over
100 studies in over 30 countries have been performed (Johnston et al., 2008; Malekinejad et al.,
2008).

However, the assumptions underlying the RDS estimator are not easily met in real life. First,
most social networks contain directed edges, or edges that do not have the same strength in both
directions. Second, to prevent participants from colluding to recruit each other back and forth
to gain rewards, real life RDS studies sample without replacement, meaning that respondents
can participate only once. Third, it is difficult for respondents to report their degree accurately
(Marsden, 2005). Fourth, participants usually pass their coupons to peers with whom they have
a close rather than a more distant relationship, which is not a random selection (Wang et al.,
2005; Frost et al., 2006). Fifth, to avoid recruitment chains stopping too early, researchers most
often use three coupons rather than one (Johnston et al., 2008; Malekinejad et al., 2008).

How well the theoretical assumptions are fulfilled in real life studies and whether deviations
from these assumptions critically affect RDS estimates have been discussed in the literature
(Heckathorn, 1997, 2002; Salganik and Heckathorn, 2004; Heimer, 2005; Salganik, 2006; Volz
and Heckathorn, 2008; Goel and Salganik, 2009, 2010; Gile and Handcock, 2010). Goel and
Salganik (2010) tested the performance of RDS on a high risk heterosexual network and on
school friendship networks. They found that the design effect (the variance of the RDS esti-
mates divided by the variance under simple random sampling) was much larger than previously
assumed. The most recent and comprehensive study of violations of the theoretical assumptions
(Gile and Handcock, 2010) simulated RDS studies on artificial networks constructed from pilot
study data from the US Centers for Disease Control and Prevention surveillance programme
(Abdul-Quader et al., 2006). Gile and Handcock (2010) analysed bias induced by violations
of assumptions (c), (e) and (f) in the context of a total population of 1000 people and a sam-
ple size ranging from 500 to 950 participants (sampling fraction: 50–95%). They addressed the
possibility of a reduction of bias by discarding early waves and found a potential bias caused
by preferential selection of peers and sampling without replacement. However, the numbers of
seeds, coupons and waves were fixed and many other assumptions that might affect the RDS
estimates, such as directness of networks, recruitment failures and degree reporting error, were
not simulated.

On the basis of current literature and the increasing use of RDS within research, we thus
identified a need for systematically testing the robustness of the RDS method when sampling
diverges from the basic assumptions in the analytical proof. This study simulates RDS studies on
a real on-line network of 16082 homosexual men, as well as on several variants of this network.
In these simulations we systematically and to varying extent violate each assumption one by
one and describe the effects on the RDS estimates.

We use RDSII for all RDS estimates in this paper as this estimator has improved analyti-
cal power compared with earlier RDS estimators and provides equivalent estimates when data
smoothing is used (Heckathorn, 2007; Volz and Heckathorn, 2008; Gile and Handcock, 2010)

Four measurements are used throughout this paper: the average estimate (AE), which is
defined by the mean of the RDSII estimates, AEj =Σm

i=1 estij=m, where estij is the estimate of
RDSII at the ith simulation when the sample size is j; the bias, which is defined by the absolute
difference between AE and the true population, Biasj = |AEj − PÅ|; the standard deviation
(SD) of estimates for a given sample size j, SDj; and finally the mean absolute error (MAE) of
estimates for a given sample size j, MAEj =Σm

i=1|estij −PÅ|=m. An alternative measure would
be to use the root-mean-square error. Here we have used the MAE to reduce the influence of
outliers.
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The rest of this paper is organized as follows: in Section 2, we give a brief description of
our data and networks; in Section 3, we describe the results of simulating RDS studies in the
networks when all the assumptions are satisfied; in Section 4, we test the effects of violating the
assumptions one by one; in Section 5, we summarize and draw our conclusions.

2. The men-with-men network

2.1. Data collection
‘Qruiser’ (http://www.qx.se), is the Nordic region’s largest and most active Web commu-
nity for homosexual, bisexual, transgender and ‘queer’ people. Contacts between members on
the Web site are maintained mainly by a ‘favourites list’, on which each member can add any
other member without approval from that member. Members can attend clubs (Web pages with
specific topics) and send messages to each other (Rybski et al., 2009).

We collected information on personal profiles as well as on all messages that were sent within
the Web community from December 15th, 2005, to January 18th, 2006. During the 63 days
of this data collection period, 12590911 messages were recorded and 184819 distinct members
were registered on the Web site.

2.2. Network formation
On the basis of the membership profiles, we extracted a network that contained only members
characterizing themselves as homosexual males. We define an outgoing edge to be formed if a
member has another member on his favourites list. An edge is called reciprocal if a connected
pair of members have both an ingoing and an outgoing edge between each other. If a pair does
not have both an ingoing and an outgoing edge between each other, it is called irreciprocal. To
avoid the inclusion of inactive people, members were required to have sent at least one message
during the data collection period.

For our research purpose, only members of the giant connected component (GCC), which
is defined by the largest component connected with only reciprocal edges, were kept as nodes
(16082 active, gay men). By keeping only the reciprocal edges in the GCC, we obtained an undi-
rected network (G1), with an average degree of 6.74. By keeping both reciprocal and irreciprocal
edges in the GCC, we obtained a directed network (G2) with an average degree of 17.2. Note
that the definition of the GCC ensures that all nodes have a chance of being recruited with RDS
sampling in both G1 and G2. Degree distributions for both G1 and G2 are plotted in Fig. 1.
The distributions are very skewed. For instance, half of the members in G2 have no more than
10 outgoing edges, whereas a small proportion of members have a large number of outgoing
edges.

2.3. Homophily
An important issue for chain referral sampling is the homophily of edge formation. Homophily
is the probability that participants connect with friends who are similar to themselves rather than
connecting randomly (Rapoport, 1980; Morris and Kretzschmar, 1995; McPherson et al., 2001;
Heckathorn, 2002). The homophily, which is defined in accordance with Heckathorn (2002),
of different groups in our network is shown in Table 1. The homophily with respect to age and
county is fairly large, indicating that a fair part of the edges were formed between members of
the same age or between members living in the same county. Taking county within the undi-
rected network G1 as an example, members who live in Stockholm formed edges with members
who also lived in Stockholm 50% of the time, whereas they formed edges randomly among all





196 X. Lu, L. Bengtsson, T. Britton, M. Camitz, B. J. Kim, A. Thorson and F. Liljeros

that individuals living in Stockholm, or individuals who are employed, have on average 1.2 times
larger social networks than people living outside Stockholm or people who are unemployed.
The former are thus more likely to be recruited into the sample.

2.5. Network variation
To avoid misleading conclusions resulting from the effects of network structure and edge density
in our simulations on the undirected network (G1), we created two variants of G1: the first type
of networks (G1add) was obtained by randomly adding reciprocal edges with properties pro-
portional to G1 until the average degree was increased by 20, for each property, separately. The
second type of networks (G1rand) was obtained by randomly rewiring each pair of reciprocal
edges to another node with the same property as the former node. After the procedures above, we
obtained four dense networks and four randomized networks, all with the homophily unchanged
for each property respectively. The details of the procedures for generating these networks can
be found in Appendix A. Their degree distributions are shown in Fig. 2.

To test the effects of preferential recruitment in RDS (Section 4.4), we weighted each reciprocal
edge in G1 in two ways: by the maximum number of sent messages in any one direction, and
by the minimum number of sent messages in any one direction. For example, if node i sent
10 messages to node j and received five back from j, the weight on edge ei,j (or ej,i) would
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Fig. 2. Degree distributions for G1 ( ), G1add ( ) and G1rand ( ): (a) age; (b) county; (c) civil
status; (d) profession
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be 10 for the maximum weighted network (G1max) and five for the minimum-weighted net-
work (G1min). In these two weighted networks, respondents were supposed to recruit peers with
probability proportional to the edge weights.

We now proceed to describe the results of simulated RDS samplings under varying circum-
stances in the networks that were described above. We compare the true population proportions
of the four variables in Table 1 (two with high homophily and two with low) with the RDS
estimates given by the simulated samplings. Unless otherwise stated, respondents were set to
use all their coupons (or to recruit all their friends if their out-degrees were too low), and all
simulations were repeated 10000 times.

3. Respondent-driven sampling on the undirected network

We first ran simulations on the undirected network G1 to see whether RDSII worked well when
all the stated assumptions (a)–(f) were satisfied. We started each simulation with a single ran-
domly selected seed and we restricted the number of coupons to 1, i.e. each recruiter could
recruit only one other person (assumption (f)). All respondents were selected randomly from
the recruiters’ personal networks (assumption (e)), and nodes could be selected multiple times
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Fig. 3. RDSII estimations on the undirected network G1 (the average estimates approached the true propor-
tions very fast; when the sample size was 500, the bias was only 0.0002, 0.0009, 0.00002 and 0.0002 for age,
county, civil status and profession respectively; design effects are substantial for age and county (homophily
0.4/0.37 and 0.5/0.4) and lower for civil status and profession (homophily 0.05/0.08 and 0.13/�0.05)): (a)
age; (b) county; (c) civil status; (d) profession
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(sampling with replacement; assumption (c)). Since all participants’ degrees were assumed to
be known by the participants themselves, and G1 constitutes a single connected component
with only reciprocal edges, assumptions (a), (b) and (d) were also satisfied. We kept recruiting
participants in the simulation until the sample size reached 10000 participants. The AE, SD,
MAE and design effects are shown in Fig. 3 for sample sizes of less than 1000 (see Fig. 4 for
sample sizes above 1000). Even though our network is sparse compared with reported stud-
ies (Heckathorn and Jeffri, 2003; Ramirez-Valles et al., 2005; de Mello et al., 2008; Volz and
Heckathorn, 2008), the RDSII estimates converged to the true population proportions PÅ very
quickly.

The SD was around 0.05, and the MAE was around 0.04 when sample sizes were between 500
and 1000 participants. The SD and MAE decreased to 0.02 when the sample size approached
10000 (see Fig. 4). The design effects of RDSII under fully satisfied assumptions were around
13 and 10, for age and county respectively, and 5 for both civil status and profession. These
values are much larger than what has been assumed earlier but are consistent with what Goel
and Salganik (2010) found in their networks. It is worth noting that when all the assumptions
are fulfilled the design effect above a sample size of 100 is almost constant, telling us that
with increasing sample size the variance of RDSII decreases at the same speed as under simple
random sampling.
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Fig. 4. RDSII estimations on the undirected network G1, for sample size larger than 1000: (a) age; (b) county;
(c) civil status; (d) profession
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In summary, the average RDSII estimates (the AEs) on the undirected network with all
assumptions fulfilled were unbiased and converged rapidly to the true population proportion.
The design effects were, however, substantial.

4. Violations of assumptions

4.1. Respondent-driven sampling on directed networks
If a directed network forms a giant strongly connected component (Schwarte et al., 2002) in
which every node can be reached by any other, and assumptions (c) and (d) are satisfied, the
next selected individual in an RDS depends only on the current respondent, which is known as
the Markov property (Hastings, 1970). Hence the RDS can be modelled as a Markov process
with the following transition matrix (Heckathorn, 2007; Volz and Heckathorn 2008):

A=

⎛
⎜⎜⎜⎜⎝

0 e12=do
1 : : : e1N=do

1

e21=do
2 0 : : : e2N=do

2

:::
:::

: : :
:::

eN1=do
N eN2=do

N : : : 0

⎞
⎟⎟⎟⎟⎠ .2/

where eij =1 if there is an edge from individual i to individual j, and eij =0 otherwise, and do
i is the

out-degree of i. The equilibrium state distribution for this process is a vector X= .x1, x2, . . . , xn/T

such that

XTA=XT: .3/

If the out-degree and in-degree are equal for all nodes it can be verified that

xi =di

/
N∑

j=1
dj: .4/

Actually, equation (4) is the underlying equation from which RDSII is derived (Volz and Hecka-
thorn, 2008; Goel and Salganik, 2009).

We now show how the equilibrium solution may be used in estimations from RDS samples
in directed networks. We can rewrite equation (3) as

ATX=X .5/

and note that X should be an eigenvector with eigenvalue 1 for AT since the eigenvalues λ are
defined by ATX =λX. The existence of an eigenvalue 1 for AT can be easily proved as the all
1 vector is an eigenvector for A (Woess, 1994; Page et al., 1999).

We let V = .v1, v2, . . . , vN/ be the normalized eigenvector of AT for eigenvalue 1. The members
of an RDS sample {s1, s2, . . . , sn} can then be weighted by the reciprocals of their values in V
so that an estimate of the proportion of individuals in group A in the population is

P̂A = ∑
si∈A

1
vsi

/ n∑
j=1

1
vsj

: .6/

We denote the estimator of equation (6) from RDS samples in a directed network using these
weights as ‘eig’ to weight the RDS samples in a directed network. Note that we can barely know
the network value V from an RDS sample.

Both RDSII and eig estimations on the directed network (G2) are presented in Fig. 5. Not
surprisingly, the RDSII estimates were biased for all groups. For age and county, these biases
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Fig. 5. Estimations on the directed network G2 (number of seeds, 1; numbr of coupons, 1; with replacement;
, RDSII estimates with out-degree; , estimates weighted by eigenvectors): (a) age; (b) county;

(c) civil status; (d) profession

were as high as 0.06, whereas civil status and profession performed better, at 0.005 and 0.022
respectively. However, the eig estimates weighted by equation (6) agreed well with the true
population proportions.

The SDs were similar for all four groups (and very similar to the SD of the undirected net-
works). However, the MAE of RDSII in the directed network was much higher than that of the
undirected networks for age and county (0.07–0.08), indicating that, if the network under study
is partly directed, the use of RDSII estimations could result in relatively large errors. We can
see that the MAE for civil status and profession were small, telling us that directness of edges
might have little effect on RDSII for groups with low homophily.

4.2. Sampling without replacement
It is generally believed that sampling without replacement creates negligible bias compared
with sampling with replacement in RDS when the sample size is small relative to the population
(Heckathorn 1997, 2002; Volz and Heckathorn, 2008). We tested this proposition in our undi-
rected network. To increase the generalizability of our results, we also compared the replacement
effect on G1add and G1rand. Results are shown in Fig. 6 for sample sizes smaller than 1000 and
in Fig. 7 for sample sizes up to 10000. For large sample sizes the RDSII estimations for sam-
pling with replacement were almost unbiased on all networks. This result held up even when
the sample occupied a large fraction of the whole population. The estimations for sampling
without replacement in contrast were biased in different directions in the different networks.
For sample sizes below 1000 there was no clear trend and the average estimates of sampling
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Fig. 6. Effects of network structures and replacement (number of seeds, 1; number of coupons, 3; ,
G1, sampling with replacement; , G1, sampling without replacement; , G1add, sampling with
replacement; , G1add, sampling without replacement; , G1rand, sampling with replacement;

, G1rand, sampling without replacement; seeds were randomly selected at the beginning of each sim-
ulation): (a) age; (b) county; (c) civil status; (d) profession

without replacement were sometimes closer to the true population than those for sampling with
replacment (see Fig. 6).

The sampling without replacement estimates always have smaller SD and MAE than those for
sampling with replacement. This is especially apparent in G1. Simulations that are not included
in this paper indicate that networks with skewed degree distributions result in larger variances
than those with a Poisson distribution and, as networks become denser, the variance becomes
smaller.

We can see that when the RDS study starts with 10 seeds and three coupons, given that
all the other assumptions are fulfilled, the design effects for all the four properties increased
with the sample size. This is most evident for sampling with replacement in G1 and G1rand.
For sample sizes of 500, the design effect for age increased to 22 and for country to 15 in G1.
However, consistent with what we observed from the SD of estimates from sampling without
replacement in Fig. 6, the design effects of sampling without replacement are all smaller than
for sampling with replacement for all variables. For civil status and profession, they are even
smaller than the ideal situation for RDSII when all assumptions are fulfilled. A likely mecha-
nism through which sampling without replacement decreases the design effect is forcing nodes
to recruit new nodes rather than already sampled nodes, thereby enabling the recruitment chains
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to penetrate new areas of the network. This will result in a more diverse set of nodes, which
are more likely to represent the entire network than if recruitment chains repeatedly sample
already explored areas. The lower variance found under sampling without replacement in this
study is also consistent with the findings of Gile and Handcock (2010). Differences between
sampling without replacement and sampling with replacement are smallest for G1add, sup-
porting the intuition that dense networks are less affected by replacement or non-replacement
sampling.

4.3. Rejecting invitations and forgetting peers
Although a great majority of participants in RDS studies report a social network size larger than
3, not all distributed coupons result in study participations (Johnston et al., 2008; Malekinejad
et al., 2008; de Mello et al., 2008). This could be seen as a violation of assumption (d), which
states that participants can accurately report their personal network size, which is assumed to
reflect the chances of being invited or of the number or peers who have a chance of being invited
by the person, and assumption (f), which states that all participants use their one coupon to
make one successful recruitment. The latter assumption includes the dual assumption that each
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Fig. 14. RDS on G1max with preferential recruitment (number of seeds, 1; number of coupons, 1; sam-
pling with replacement; , RDSII estimates; , eigenvector estimates; , RDSII estimates
for recruitment with uniform probability; , true population values; seeds were randomly selected at the
beginning of each simulation): (a) age; (b) county; (c) civil status; (d) profession

MAE with increasing pr and pi, all imply a strong resistance of RDSII against these recruitment
errors, as long as the recruitment chains can continue and generate the target sample size.

These simulations do not test all types of violation of assumptions (d) and (f). If we for exam-
ple set pi and pr as dependent on any of our four outcome variables, errors could be much larger
than described above. Indications of such non-random recruitment has been reported from a
study of sex among men with men in Campinas, Brazil (de Mello et al., 2008), and from a study
of injecting drug users in Chicago (Scott, 2008). To evaluate the effects of non-random recruit-
ment, we performed further simulations in which both the ignore and the reject probabilities
differed, depending on group membership.

Let pi be the probability that a member in the group of interest will be ignored by his friends
when these friends are given the possibility to recruit, and let pr be the probability that a coupon
will be rejected by a member in the group of interest. Similarly, let p′

i and p′
r be the corresponding

ignore and reject probabilities for members who are not in groups of interest. Surfaces for RDS
with unequal recruiting probabilities are presented in Figs 11–13. We can see that, when the
ignore or reject probabilities depended on the characteristics of the members, the RDS estimates
gave large bias and error. Take the first simulation in Fig. 11, for example: when members who
were born before 1980 rejected half of the invitations that were given to them and the members
who were born after 1980 did not reject any invitations (pi and p′

i both set to 0), the bias was
over 0.3 for age.

When pi = p′
i, the bias and MAE are small as long as pr = p′

r and vice versa. As both the
ignore and the reject actions will reduce the inclusion probabilities of group members, they have
similar effects on the RDS estimates and can compensate for each other. For example, when the



Respondent-driven Sampling 209

0 5000 10000
0.74

0.76

0.8
A

E

0 5000 10000

0.4

0.42

0.44

0 5000 10000

0.42

0.44

0.46

0 5000 10000

0.4

0.42

0 5000 10000
0

0.05

0.1

S
D

0 5000 10000
0

0.05

0.1

0 5000 10000
0

0.05

0.1

0 5000 10000
0

0.05

0.1

0 5000 10000
0

0.05

0.1

sample size
(a) (b) (c) (d)

M
A

E

0 5000 10000
0

0.05

0.1

sample size
0 5000 10000

0

0.05

0.1

sample size
0 5000 10000

0

0.05

0.1

sample size

P*P*P*

P*

Fig. 15. RDS on G1min with preferential recruitment (number of seeds, 1; number of coupons, 1; sam-
pling with replacement; , RDSII estimates; , eigenvector estimates; , RDSII estimates
for recruitment with uniform probability; seeds were randomly selected at the beginning of each simulation):
(a) age; (b) county; (c) civil status; (d) profession

fixed ignore probabilities were pi = 0:1 and p′
i = 0:3, the minimum bias and MAE were when

pr >p′
r. For all the simulations, the values of the MAE were almost the same as those of the bias,

revealing that, when the groups studied have different ignore or reject probabilities, the RDS
estimates will virtually always be too high or too low. Although differences between groups in pi
can be compensated for by inverse differences between the groups in pr, it can be hypothesized
that such a combination of probabilities would be unusual in real life. As participants in RDS
studies are rewarded for successful recruitments, a rational and self-interested participant would
seek to ignore contacts whom he or she considers unlikely to accept an invitation. This would
mean that groups with high pr would also have a high pi. Unfortunately, such combinations of
pi and pr always give rise to the largest bias and MAE.

4.4. Preferential recruitment
There is empirical evidence of non-random recruitment in RDS studies. In a study of sex among
men with men in Campinas City, Brazil (de Mello et al., 2008), participants were reported most
often to recruit close peers or peers who they believed practised risky behaviours. According to
equation (2), it is easy to infer that RDSII would be biased when recruitment is a non-random
selection among the edges of each node, as equation (4) is no longer the equilibrium.

A plausible non-random recruitment scenario would be that contacts with whom the recruiter
interacts more frequently have a higher probability of being invited than those with whom the
recruiter interacts only seldom. Simulation results for RDS on G1max, in which respondents
were supposed to recruit peers with a probability proportional to the edge weights, are presented
in Fig. 14. We can see that the RDSII estimations were no longer unbiased for all groups. The
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routinely compare participants’ reported network composition with actual recruitments to pro-
vide further empirical evidence on this issue from a wide variety of contexts.

In addition to testing the violation of assumptions, we also analysed some of the effects of
network structure and homophily on RDSII. The results are consistent with previous studies:
sparse networks with skewed degree distributions had larger error and bias, and estimations
of groups with small homophily performed better than estimations among groups with high
homophily.

The deviations from the assumptions that we have simulated in this paper can be modelled in
different ways, which affect the conclusions. We have opted for deviations that we consider rel-
evant to RDS studies in different contexts, but the simulations still represent subjective choices
and do not cover all situations that are relevant to real life RDS studies. Moreover, although we
have tried to make results more generalizable by varying the properties of the original network,
the network characteristics that are actually picked for simulations do not reflect all types of
networks, which could impact on the interpretations of the results. In summary we have shown
the effects of a large number of deviations from assumptions. We show that the bias, MAE, SD
and design effects are all affected by a large number of parameters. In further work, it would
be valuable to run simulations of RDS studies with some realistic combinations of violations
taken from real life studies as well as running simulations on other complete real life networks
from diverse settings.
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Appendix A: Descriptions of network formation

The original male-to-male network Gorigin included 31945 profiles that belonged to homosexual men, and
from which at least one message had been sent to another member. This network contained 364746 directed
edges, where each edge represented the sending of at least one message from a sender to a recipient during
the data collection period.

When we keep only reciprocal links in the original network, i.e. if a message was sent from member i
to member j, a connection between i and j was retained only if j also had sent a message to i. We thus
obtained an undirected version of the original network, Greciprocal, in which any edge was the result of a
pair of directed edges. To make the network mimic a real social network and to meet the assumptions of
RDS, we kept only members of the GCC of Greciprocal for our study, i.e. 16082 members, which is the size
of the networks that were studied throughout the paper.

After defining the members to be studied in the network, we generated various networks by varying the
inclusion criteria of edges. By keeping only the reciprocal edges between them, i.e. the GCC of Greciprocal,
we obtained an undirected network (G1) with an average degree of 6.74. By keeping both the reciprocal
and the irreciprocal edges (the nodes defined by the GCC of Greciprocal, but the edges retained as in Gorigin),
we obtain a directed network (G2) with an average degree of 17.2. Since all nodes belong to the GCC and
the reciprocal edges were kept in both networks, all nodes would have the chance to be recruited with RDS
sampling in either G1 or G2.

The generation processes of the other networks are as follows. (For simplicity, all edges discussed below
are undirected.)

A.1. Generation of G1add
For each property A, G1add is a network with the same nodes and homophily but with the average degree
of the nodes increased by 20. The networks were created according to the following process.
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(d) Repeat until all edges have been rewired at least once.
(e) If any node is not part of the GCC, repeat steps (a)–(c) until that does not happen.

In summary, the generation process of networks that was used in this paper can be depicted with the
flow chart in Fig. 19, where the dark filled boxes are undirected networks and the light filled boxes are
directed networks.
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