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Abstract.  Sampling networks via crawling has become a feasible and widely 
used approach when the global network information is dicult to obtain. But 
there is little focus on two-mode networks, i.e. bipartite networks in which 
nodes can be divided into two disjoint partitions. In this paper, we adopt eight 
popular crawling methods (BFS, DFS, FFS, RW, SNS, MHRW, MDRW and 
RDS) from studies of one-mode networks and evaluate their applicability and 
performance on bipartite networks. Simulation results show that Metropolis–
Hastings random walk (MHRW), maximum-degree random walk (MDRW) and 
respondent-driven sampling (RDS) perform better than the other methods, and 
population estimates from them are minimally aected by the structures of 
degree distribution, number of nodes in two node layers, degree correlation and 
communities. In addition, we find that strategies used in the sampling design—
selection approaches for seed nodes, the number of seed nodes, and the number 
of branches—have very little influence on the estimation bias. Finally, we list 
suggestions for the selection of crawling methods on bipartite networks under 
dierent situations.
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1. Introduction

Network sampling has become a critical technique for studying large-scale complex sys-
tems. It provides feasible, cost-ecient ways to analyze a network’s properties through 
samples. Many network sampling methods have been proposed, e.g. random node sam-
pling [1–3] and random edge sampling [2, 4, 5]. When a sampling frame has been con-
structed with the network’s global information, random node sampling and random 
edge sampling can easily obtain a uniform sample of nodes and edges. In practice, 
however, global information has remained dicult to obtain. The size and topological 
structure of real social networks remain incomplete [6, 7], while the space of user IDs 
is sparse in online social platforms [8, 9].

To overcome the diculties in accessing the global information of networks, several 
crawling methods [2, 4, 10, 11] (also called ‘graph-exploring methods’) have been pro-
posed. The crawling methods begin with one or more nodes and then explore nodes in 
the vicinity without requiring the sampling frame or global structure of the network [2]. 
The most popular methods include breadth first search (BFS) [12], depth first search 
(DFS) [12], forest-fire sampling (FFS) [2], random walk (RW) [13], snowball sampling 
(SNS) [14], respondent driven sampling (RDS) [15], Metropolis–Hastings random walk 
(MHRW) [16] and maximum-degree random walk (MDRW) [17]. Many studies have 
examined crawling method strategies, evaluating their dierences in terms of eciency 
and bias [2, 10, 11, 18, 19], how well they improve upon existing methods with certain 
prior knowledge [6, 20–24], and how they can be applied to empirically assess real-
world networks, like online social platforms [11, 25], P2P networks [26, 27], and hidden 
populations [28–30]. These studies have focused on one-mode networks, which have 
only one type of nodes.

However, many real-world systems are naturally represented as bipartite networks 
in which nodes are divided into two disjoint partitions, which is to say as dual-layered 
networks. For example, many artistic collaborative networks are formed with nodes 
representing musicians and live musical performances and edges representing the par-
ticipation of musical artists in shows [31, 32]. Scientific collaboration networks are 
formed with nodes representing scientists and research publications and edges repre-
senting scientists’ contributions to the publications [33, 34]. Protein interaction net-
works are formed with nodes representing two types of proteins and edges representing 
the bonds between them [35, 36]. E-commerce platforms are represented as nodes 
standing for consumers and commodities and edges that show documented consumer 
purchases [37, 38]. Product recommendation systems are formed with nodes represent-
ing users and products and edges representing the online comments with which users 
recommend items to others [39, 40]. And online forums are modeled with nodes repre-
senting users and forums and edges representing how users’ interactions aggregate to 
shape forums’ characteristics [41, 42]. Many studies have analyzed bipartite networks. 
These have ranged from empirical analyses [37, 40], characterizations of networks [43, 
44], projections from bipartite structure to monopartite structure [45, 46], generation 
modeling [47, 48], and community detection [49, 50].

However, little attention has been paid to the study of sampling methods for bipar-
tite networks [51]. Many real-world bipartite networks are too large to aord researchers 
access to all relevant data. For example, acquiring complete data for online e-commerce 
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platforms or online rating systems is unfeasible. Although it is possible to project the 
bipartite network into a one-mode network and to conduct sampling methods on this 
projected network, the one-mode projection generally brings lots of drawbacks such as 
losing information about the original networks and that the global information of net-
works is needed for the projection operation.

In this paper, we focus on the above-mentioned crawling methods, which are 
regularly used in the study of one-mode networks. We evaluate the feasibility and 
eectiveness of applying them to bipartite networks. From samples, we aim to estimate 
the population mean of node variables in two layers. Basically, we choose two kinds of 
variables. One is a numerical variable, i.e. the degree of nodes; another is a categories 
variable, i.e. the a binary-valued node property. Specifically, our goal is to answer three 
questions: (1) can these crawling methods be used in sampling bipartite networks; (2) 
what factors in network structures and the parameters of sampling strategies aected 
the crawling method’s performance; (3) last, which methods are more adequate under 
dierent scenarios. We finally provide references for the selection of sampling methods 
on dierent kinds of bipartite networks.

The tested topological structures include (1) degree distributions, (2) the number of 
nodes in two layers, (3) the degree correlation, and (4) community structure. For the 
aspect of sampling design, we evaluate the influence of: (1) the selection of initial nodes 
(the selection strategies for seeds and the number of seeds for SNS and RDS); and (2) 
the number of branches (the number of neighbors selected when implementing FFS, 
SNS and RDS). In simulations, we generate artificial networks and implement crawling 
methods to collect samples from each layer. We then analyze the eects of network 
structures and sampling design on the precision of estimation in two layers.

The rest of this paper is organized as follows. In section 2, we briefly detail the 
eight crawling methods evaluated in this study. In section 3, we introduce the bipartite 
network generation models which incorporate the structural parameters required for 
testing crawling methods. In section 4, we compare the simulation results for dierent 
topological structures and delineate the results derived by dierent sampling designs. 
In section 5, we conclude by reporting our findings and providing suggestions for select-
ing the appropriate crawling methods under dierent settings.

2. Crawling methods

Crawling methods are used when the global information is unknown, or it is more 
ecient to infer the network’s global properties with a small subset of nodes and 
edges. In this section, we describe the crawling methods tested in this study. The basic 
sampling designs of these methods are shown in table 1. Their sampling processes are 
shown in figure 1.

2.1. Breadth first search (BFS)

BFS is a classic graph traversal algorithm in computer science. It starts with a single 
seed node and explores neighbors of visited nodes iteratively. At each iteration, the 
earliest explored but not-yet-visited node is selected [52]. When a node is visited, 
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information regarding the studied variables is collected. By the end of crawling, we 
calculate the sample mean as an indicator for the population estimates (see table 1).

2.2. Depth first search (DFS)

Similar to BFS, DFS also starts with a single seed node. However, it selects the latest 
explored but not-yet-visited node at each iteration [52]. And the sample mean is also 
used as the population estimates for the studied variables (see table 1).

2.3. Forest-fire sampling (FFS)

FFS is a probabilistic version of BFS [2]. A burning probability p decides whether a 
neighbor of the current node is explored. When p  =  1, FFS is identical to BFS. In the 
sampling process, the studied variables of ‘burned’ node (sample) are selected. And the 
sample mean is used as the population estimates for the studied variables (see table 1).

2.4. Snowball sampling (SNS)

SNS is one of the best-known chain referral sampling methods in sociology and sta-
tistics research [14]. It starts with a set of seed nodes and selects a number of nodes 
randomly from all neighbors of each seed node. The selected nodes then become new 
seed nodes and iterate the same process of node selection. When all the neighbors are 
selected at each iteration, SNS works like BFS. Similarity, the sample mean is used as 
the population estimates for the studied variables in SNS (see table 1).

In summary, in the absence of global information, the above methods conduct the 
statistic inference by calculating the sample mean directly (see table 1), which intro-
duces the bias toward high degrees.

2.5. Respondent driven sampling (RDS)

RDS has been widely used to study hidden populations [53]. It adopts the sampling 
process of SNS and the number of randomly selected neighbors is fixed (generally, three 
to five) due to the fact that the rejection rate of hidden populations is high in practical 
implementation of selecting neighbors [53]. In the sampling process, the studied vari-
ables and the degree of the sample node are collected. Compared with SNS, RDS can 
use the collected local information to conduct bias adjustment and statistical inference 
[54]. Dierently from the other above-mentioned methods, RDS estimates the popu-
lation mean though the re-weighted correction [28] instead of by calculating sample 
mean directly (see table 1).

2.6. Random walk (RW)

RW is a widely used method. It starts with one seed and selects the next node randomly 
from the current node’s neighbors [13]. All nodes in the chain of RW are sampled. RW 
is typically implemented with replacement. As the inclusion probability of nodes is pro-
portional to the node degree in RW, high degree nodes are overrepresented in samples. 
Consequently, RW samples are biased by the prevalence of high degree nodes.

https://doi.org/10.1088/1742-5468/aace0f
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Table 1. Basic sampling design of crawling methods.

Crawling 
methods

Seed  
number

Branching 
number

With/without 
replacement

Prior  
information

Population 
mean estimates 
of a variable y

BFS 1 1 WOR — ∑
i∈S

yi/ns

DFS 1 1 WOR — ∑
i∈S

yi/ns

FFS 1 Probability WOR — ∑
i∈S

yi/ns

RW 1 1 WR — ∑
i∈S

yi/ns

MHRW 1 1 WR Neighbors’ 
degree

∑
i∈S

yi/ns

MDRW 1 1 WR Max degree  
of nodes

∑
i∈S

yi/ns

SNS Multiple Multiple WOR — ∑
i∈S

yi/ns

RDS Multiple Multiple WR — ∑
i∈S

k−1
i yi/

∑
i∈S

k−1
i

yi, the value of the variable y for node i; S, the sample set; ns, the sample size; ki, the degree of node i.

1

1

0

2
2

2
2

2

3

3

(a)

4

4

1

0
2

3

(b) 

1

0
2

3

(c) 

2 3

3
4

3

1

0
2

(d)

3
4

1

0

2

(e) 

3

4

1

0

(f)

2

3

4

0

(g) 

1

1

2
2

2
2

3

3

3

4

0

(h) 

1

1

2
2

2

4

3

4

2

3

Figure 1. Sampling process of crawling methods. (a) BFS, (b) DFS, (c) FFS,  
(d) RW, (e) MHRW, (f) MDRW, (g) SNS and (h) RDS. The burning probability of 
FFS is 0.5. The number of initial seeds and branches is 1 and 2 for SNS and RDS. 
RDS is done without replacement.
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For adjusting the bias of transitional random walk and using the sample mean to 
conduct the unbiased estimation, Metropolis–Hastings random walk and maximum-
degree random walk have been provided.

2.7. Metropolis–Hastings random walk (MHRW)

MHRW is a random-walk based method which modifies the transition probabilities in 
the sampling process [11]. At each iteration, it randomly selects a neighbor j of the 
current node i and walks to the neighbor with probability min(1, ki/kj) where ki and 
kj are the degree of i and j. In this way, the walk towards a node with smaller degree 
is accepted, while some of the walks towards nodes with higher degree are rejected. 
Consequently, the method adjusts the bias towards high degree nodes during the sam-
pling process. At each step, the degrees of the current node i and the randomly selected 
neighbor j are collected for calculating the transition probability. Then the studied 
variables of the sampled node is collected. MHRW also use the sample mean as an 
indicator for the population estimates (see table 1).

2.8. Maximum-degree random walk (MDRW)

MDRW assumes that a random walk has been performed on a modified regular net-
work. This regular network is generated from the original network by adding a dierent 
number of self-loops on nodes so that the degree of each node ends up with the maxi-
mum degree of the original network [17]. Thus, at each iteration, it selects one neighbor 
of the current node i with the probability ki/kmax and stays at the cur rent node i with 
the probability (kmax − ki)/kmax where ki is the degree of node i in the original network, 
and kmax is the maximum degree of the original network. In this way, the bias intro-
duced by high degree nodes is adjusted during the sampling process. In the sampling 
process, the degree and the studied variables of current node are collected. And the 
sample mean is used as the population estimates for the studied variables (see table 1).

3. Generation of bipartite network

To investigate the eect of dierent structures of bipartite networks on estimations of 
node variables of two node layers, we generate artificial networks with dierent net-
work structures. The basic statistics for a realization of each type of bipartite networks 
are shown in table 2.

3.1. Notation

Consider a bipartite network G in which nodes are divided in two disjoint parti-
tions (layers), U and V ; and E refers to the edges connecting the two layers, so that 
G = (U ,V ,E) with U ∩ V  and E ⊆ U ⊗ V . The node degree sequences of U and V  are 

denoted as SeqU = {ku
i |i = 1, 2, .., |U |} and SeqV = {kv

j |j = 1, 2, ..., |V |}.

https://doi.org/10.1088/1742-5468/aace0f
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A set of bipartite networks are then generated in accordance with the following 
structural parameters:

3.2. Degree distribution

We extend the configuration model [55, 56] to generate a bipartite network with two 
given degree distributions. Specifically, we first generate two layers of nodes, U and V . 
And each node is assigned a degree drawn from the given degree sequences SeqU and 
SeqV , so that each node i ⊆ U  has ku

i  stubs and each node j ⊆ V  has kv
j stubs. Lastly 

the stubs of U are randomly connected to the stubs of V . Note that 
∑|U |

i=1 k
u
i =

∑|V |
j=1 k

v
j .

The degree distributions of two node layers typically follow power laws in real-
world bipartite networks, such as those in scientific collaboration networks [57] and 
actor-movie networks [58]. So, we first generate two types of bipartite networks with 
dierent degree distributions for comparison: (1) Gpoi: the degree distributions for U 
and V  follow a Poisson distribution; (2) Gpow: the degree distribution for U and V  fol-
low a power-law distribution. The generation steps are as follows. We first generate 
a Barabási–Albert (BA) network [59] and a Erdős–Rényi (ER) network [60]. Both of 
them have 10 000 nodes and 120 000 edges. Then we extract their node degree sequences, 
defined as SeqBA and SeqER respectively. Finally, we use two SeqBA sequences to gener-
ate Gpow with the aforementioned configuration model. In the same way, we use two 
SeqER sequences to generate Gpoi.

3.3. Number of nodes in each layer

The number of nodes for two layers in bipartite networks may be unequal, e.g. the 
number of user nodes is much larger than that of company nodes in labor-company 
networks [61] and the number of rater nodes is much larger than that of movie nodes 
in movie rating networks [62]. For comparison with Gpow in which two layers have the 
same number of nodes, we generate the bipartite network Gdiff_size in which the size of 
U is ten times larger than V . The generation steps are as follows. We first generate a 
BA network which has 1000 nodes and 120 000 edges. Then we extract the node degree 
sequence Seq′BA from this BA network. After that, we use SeqBA and Seq′BA to generate 
Gdiff_size by the aforementioned configuration model.

Table 2. Basic statistics for the realization of dierent types of bipartite 
networks.

Network |U | |V | |E| 〈kU〉 〈kV 〉 r Nc

Gpoi 10 000 10 000 120 000 12 12 −0.004 0
Gpow 10 000 10 000 120 000 12 12 −0.013 0
Gdiff_size 10 000 1000 120 000 12 120 −0.303 0
Gassort 10 000 10 000 120 000 12 12 0.2 0
Gdisassort 10 000 10 000 120 000 12 12 −0.1 0
Gcommu 10 000 10 000 120 000 12 12 −0.031 5

|U | and |V |, the size of two layers; |E|, the number of all edges; 〈kU〉 and 〈kV 〉, the average 
degree of U and V ; r, the degree correlation between two layers; Nc, the number of 
communities.

https://doi.org/10.1088/1742-5468/aace0f
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3.4. Degree correlations

Degree correlation describes the tendency of nodes to connect preferentially to other 
nodes with either similar or opposite degree values. Networks in which nodes tend to 
be connected with similar degree values show assortative mixing, otherwise they show 
disassortative mixing. The degree correlation structures have been observed in many 
real-world bipartite networks [44]. We use the Pearson correlation coecient r to 
quanti fy the tendency [63, 64]:

r =
|E|−1 ∑

i diki − [|E|−1 ∑
i
1
2
(di + ki)]

2

|E|−1 ∑
i
1
2
(d2i + k2

i )− [|E|−1 ∑
i
1
2
(di + ki)]2

, (1)

where |E| is the number of edges in the network, and di and ki are the degrees of nodes 
at the end of the ith edge, i = 1, 2, ..., |E|. The correlation coecient r lies between  −1 
and 1. When r  >  0 the network shows assortative mixing patterns, when r  =  0 the 
network shows no degree correlations, and when r  <  0 the network is dissassortative.

To generate bipartite networks with varying degree correlations, we use an edge 
rewiring operation. Specifically, given a bipartite network G = (U ,V ,E), we first ran-

domly pick a pair of edges, ei = (ui, vi) and ej = (uj, vj) where ui, uj ⊆ U  and vi, vj ⊆ V . 

Then we rewire two edges as e′i = (ui, vj) and e′j = (uj, vi) and recalculate degree correla-
tion (r′) of the network. If the new edges do not exist, and r′ is approaching the desired 
value, this rewiring operation will be kept; otherwise the operation is rolled back, and 
a pair of edges are reselected. The above processes are repeated until r′ reaches the 
desired value. Note that r′ is bound to an upper (assortative) and lower (disassortative) 
limit due to the fact that edges in bipartite networks only connect nodes across the 
two node layers. Here we find the upper and lower bound are about  −0.150 and 0.295 
in edge rewiring simulations.

According to the above approach, we take Gpow, whose degree correlation coecient 
almost equals to 0, as the baseline and generate two types of bipartite networks with 
degree correlation structures: Gassort with r  =  0.2 and Gdisassort with r  =  −0.1.

3.5. Community structures

A network has community structure if its nodes tend to gather into groups such that 
each group of nodes is densely connected internally [65]. Empirical studies show that 
community structures exist in many bipartite networks [49].

In this study, we extend Girvan and Neman’s (GN) benchmark model [65, 66] 
to generate bipartite networks with community structure by using two given degree 
sequences. The main steps are shown in figure 2. In the first step, two layers of nodes, U 
and V , are generated, and each node is assigned a degree drawn from the given degree 
sequences SeqU and SeqV . No nodes are assigned to any community at this stage. 
We assume that the number of communities is Nc and each community has the same 
size in the bipartite network to be generated, so that the size of each community s is 
(|U |+ |V |)/Nc. In the next step, a mixing parameter α is introduced [66]: each node i 
with degree ki shares a fraction 1− α of its edges with the other nodes of the same com-
munity, and a fraction α with the other nodes of the networks, i.e. the internal degree 

(the number of its edges inside the community) k(in)
i = (1− α)ki and external degree 

https://doi.org/10.1088/1742-5468/aace0f
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(the number of its edges outside the community) k(out)
i = αki. Therefore, a bipartite 

network with stronger community structures is generated by a small α.
Then we assign all nodes to the communities. In the first iteration, we randomly 

select a node i from U ∪ V  and assign it to a community ξ; if the internal degree of node 
i does not exceed the community size, the node is assigned to ξ, otherwise it remains 
solitary. In successive iterations, we continue to assign solitary nodes to ξ; if the com-
munity is assigned to s nodes and the sum of the internal degree of nodes from U equals 
that of nodes from V  in ξ, we stop the procedure. Otherwise, a node randomly selected 
from the community will be taken out and become solitary. The remaining solitary 
nodes will also be assigned to the rest of communities by the same procedure.

After each node has been assigned to a community, we connect all nodes to gener-
ate the whole network. Inside each community, we use the internal edges of nodes to 
connect them by the aforementioned configuration model. Then we consider each com-
munity as a component with stubs representing the external edges of the community 
and randomly connect its stubs to those of other communities under the condition that 
both ends of a connection are from dierent node layers.

According to the above steps, we take Gpow, which is of no community structures, as 
a baseline, and use its degree sequences of two layers to generate the bipartite network 
Gcommu with 5 communities. The mixing parameter α is 0.1.

3.6. Node property assignment

For each generated network, we assign each node with a binary-valued property. The 
rule is as follows. In layer U, we select 60% of nodes with the probability proportional 
to their degree, i.e. the node with high degree has higher probability to be selected. 
Then the selected nodes are assigned with property A and the remaining nodes are 
assigned with property B. In such a property list, the property values of the nodes 
with property A are 1 and those with property B are set at 0. The proportion of nodes 
in layer U with property A is then 0.6. Similarity, we assign and set the proportion of 
nodes with property A in layer V  to be 0.4.

(a) (b)

community 1

community 2

nodes in layer U
nodes in layer V

(c) (d)

Figure 2. The basic steps for the generation of bipartite network with community 
structure. (a) Generate two layers of nodes. (b) Assign nodes to dierent 
communities. (c) Connect nodes with internal edges. (d) Connect communities 
with external edges. In this figure, the mixing parameter α is 0.3 and the number 
of communities is 2.
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4. Simulation settings

In each simulation, we first generate a bipartite network according to the specific pur-
pose. Then we randomly select the initial seed nodes and implement a crawling method 
on the generated bipartite network to collect samples (less than 10%) from each layer. 
After collecting samples, we analyze the eect of network structure and sampling 
design on the estimation of the population means of two representative variables in two 
layers, one is numerical variable, i.e. the degree of nodes. Another is a categories vari-
able, i.e. the binary-valued node property. The population means of these two variables 
characterize two important characteristics of networks: the average degree of network 
〈k〉 and the proportion of nodes with one property (property A in this paper) P (A).

The basic settings are as follows. The burning probability p of FFS is 0.5, the 
number of initial seeds and the number of branches for SNS and RDS are 5 and 3 
respectively. All simulations are repeated 100 times, and results are averaged over 100 
simulations.

In this paper, we use relative error (RE) to measure the performance of crawling 
methods on the estimate of variables of two layers. The relative error of the population 
mean of a variable y for U, REU , is

REU =
|〈ŷU〉 − 〈yU〉|

〈yU〉
, (2)

where 〈ŷU〉 is the population mean of variable y for U calculated from the estimator of 
dierent methods, and 〈yU〉 is the true population mean of y for U. The relative error of 
the population mean of y for V , REV , can also be calculated in the same way.

5. Results

5.1. Eect of network structure

In this section, we focus on whether the performance of a sampling method is aected 
by the network structures of bipartite networks, i.e. degree distribution, number of 
nodes in two layers, degree correlation and community structure.

5.1.1. Degree distribution. First, the eect of the degree distribution on the perfor-
mance of a crawling method is investigated. Figure 3 shows the relative error REU  and 
REV  for the implementation of dierent methods on bipartite networks with dierent 
degree distributions of two layers. It reveals that, for MHRW, MDRW and RDS, both 
REU  and REV  vary little in these networks and are almost equal to 0, for estimating 
either the average degree (〈k〉) or the proportion of nodes with property A (P (A)), which 
is to say, the performance of these methods is not aected by the degree distribution.

However, the performance of other crawling methods, including BFS, DFS, FFS, 
RW and SNS, is aected by the degree distribution. When the degree distribution fol-
lows a power-law, the relative error of the population mean of variables is much larger 
than that of Poisson distribution. Even the relative error decreases with sample size 
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in all these methods except RW, the dierence remains larger than 1 for 〈k〉 and large 
than 0.16 for P (A), when the sample proportion reaches 10%. The varying performance 
can be explained by the sample representativeness obtained by these dierent crawling 
methods: BFS, DFS, FFS, RW, and SNS all tend to oversample high degree nodes in 
the network with power-law degree distribution of layers. But for MHRW, MDRW and 
RDS, correction mechanisms eectively reduce the bias introduced by over-representa-
tiveness of high degree nodes.

5.1.2. Unequal number of nodes in two layers. Secondly, we focus on whether an 
unequal number of nodes in the two layers of bipartite networks aects the perfor-
mance of crawling methods. Figure 4 shows the relative error REU  and REV  for the 
implementation of crawling methods on bipartite networks with an unequal number 
of nodes in two layers. We can see that both REU  and REV  vary little for MDRW 
and RDS. However, for MHRW, the REU  for 〈k〉 and P (A) varies significantly in these 
networks, although the variation of REV  is little: the dierence in REU  between Gpow 
and Gdiff_size (the size of V  is 1/10 of that in Gpow) for 〈k〉 is 1.02, and that for P (A) is 
0.20, when sampling ratio reaches 10%. The result indicates that its performance in U 
is strongly aected by the unequal number of nodes in two layers. The reason for the 
results is that the correction mechanism of MHRW becomes invalid in U: the walks 
from V  to U cannot select nodes with a smaller degree in U when the average degree 
of V  is much larger than U.

For other crawling methods, including BFS, DFS, FFS, RW and SNS, the dierence 
in REU  among these networks decreases to almost 0 when the sample proportion exceeds 
5%, thus indicating that their performance in U is not influenced by the unequal number 
of nodes in layers. However, their performance in V  is aected. Although the dierence 
in REV  among these networks decreases with sample size, it also remains large when 
the sample proportion reaches 10%. For 〈k〉 of the layer, the dierence between Gpow 
and Gdiff_size is 0.75 for BFS, 0.69 for DFS, 0.66 for FFS, 1.4 for RW and 0.63 for SNS. 
For P (A), the dierence between Gpow and Gdiff_size is 0.21 for BFS, 0.13 for DFS, 0.17 
for FFS, 0.24 for RW, and 0.19 for SNS.

5.1.3. Degree correlation. In addition, we discuss the influence of degree correlation 
on the performance of a sampling method. Figure 5 shows the relative error REU  and 
REV  for the implementation of crawling methods on bipartite networks with dierent 
degree correlations. First of all, we can see that the REU and REV  for DFS, RW, 
MHRW and MDRW vary little with the change of degree correlation, for both 〈k〉 and 
P (A), revealing that these methods are virtually not aected by the degree correlation.

Second, the REU  and REV  for SNS are large when the sampling proportion is small, 
and they decrease with the sample proportion. Both for 〈k〉 and P (A), these relative 
errors vary slightly between the network with r  =  0 and the network with r  =  0.2. But 
such variations are not obvious between the network with r  =  0 and the network with 
r  =  −0.1. Third, RDS has constant relative errors which do not change with the sample 
proportion. But the relative errors of the network with r  =  0.2 are slightly larger than 
those of the network with r  =  0. Similar to SNS, the relative errors show little dierence 
between the network with r  =  0 and the network with r  =  −0.1. These results indicate 
that SNS and RDS are slightly aected by degree correlation.
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Lastly, we can see that REU  and REV  for BFS and FFS both vary greatly in 
dierent networks. With the increasing of the degree correlation (from  −0.1 to 0.2), the 
relative error of both layers for the two methods increases substantially: when sampling 
ratio is 10%, for BFS, the relative error of 〈k〉 increases from 0.30 to 2.23 in layer U 
and from 0.41 to 2.11 in layer V , and that of P (A) increases from 0.02 to 0.30 in layer 
U and from 0.06 to 0.53 in layer V ; for FFS, that of 〈k〉 increases from 0.61 to 1.75 in 
layer U and from 0.60 to 1.74 in layer V , and that of P (A) increases from 0.07 to 0.60 
in layer U and from 0.13 to 0.63 in layer V . That is to say, BFS and FFS are seriously 
influenced by degree correlation.

5.1.4. Community structures. Finally, we focus on whether the performance of a sam-
pling method is aected by community structure. The results are shown in figure 6. 
We can see that the REU  and REV  for BFS, DFS, FFS and SNS are large when the 
sampling proportion is small, and they decrease with the sampling proportion. Among 
them, for BFS and FFS, the dierence in REU  and REV  between networks with and 
without community structures does not decrease with the sampling proportion. When 
the sampling proportion reaches 10%, the dierence remains larger than 0.25 for 〈k〉 
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Figure 3. Relative error REU  and REV  obtained from (a) BFS, (b) DFS, (c) FFS, 
(d) RW, (e) MHRW, (f) MDRW, (g) SNS, (h) RDS in Gpoi and Gpow (i.e. bipartite 
networks with dierent degree distributions of two layers).
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and larger than 0.10 for P (A). Such dierences for DFS and SNS also exist but are 
very small. Other methods, including RW, MDRW, MHRW and RDS, have constant 
relative errors which do not change with the sample proportion. For these methods, the 
dierence in REU  and REV  between networks with and without community structures 
is small and almost equal to 0.

These results indicate that, among the eight crawling methods, only BFS and FFS 
are aected by the strong community structure. As the chains of samples (number of 
recruitment waves) can grow relatively long in MHRW, MDRW and RDS, the crawling 
can easily break the communities such that the representativeness of the sample can 
be retained.

5.2. Eect of the sampling design

In this section, we focus on whether the performance of a sampling method is aected 
by the dierent settings of sampling design on bipartite networks. Such settings include 
the selection approach for seeds, the number of seeds for SNS and RDS, and the 
branching number for FFS, SNS and RDS.

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

0 0.05 0.1
0

1

2

3

sampling ratio sampling ratio sampling ratio sampling ratio

sampling ratio sampling ratio sampling ratio sampling ratio

sampling ratio sampling ratio sampling ratio sampling ratio

sampling ratio sampling ratio sampling ratio sampling ratio

R
E

U

R
E

V

R
E

U

R
E

V

R
E

U

R
E

V

R
E

U

R
E

V

R
E

U

R
E

V

R
E

U

R
E

V

R
E

U

R
E

V

R
E

U

R
E

V

(a) (b) 

(c) (d) 

(e) (f)

(g) (h)

Gpow (<k>) Gdiff_size (<k>) Gpow (P(A) ) Gdiff_size (P(A) )

Figure 4. Relative error REU  and REV  obtained from (a) BFS, (b) DFS, (c) FFS, 
(d) RW, (e) MHRW, (f) MDRW, (g) SNS, (h) RDS in Gpow and Gdiff_size (i.e. 
bipartite networks with unequal number of nodes in two layers).
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5.2.1. Selection approach for seed nodes. First, we compare two kinds of selection 
approaches for seed nodes. The first approach selects seed nodes uniformly from the 
bipartite network. The second approach selects seed nodes with probability propor-
tional to their degree, insofar as nodes with more connections are more likely to be 
selected as seeds. Figure 7 shows the REU  and REV  when sampling methods select node 
seeds by dierent approaches in Gpow. We can see that, for all these crawling methods, 
the dierence in both REU  and REV  for 〈k〉 and P (A) is little, regardless of the dierent 
selection approaches used. The result indicates that these crawling methods are not 
aected by the selection approaches for seed nodes.

These results are similar to what was found in the one-mode network [54, 67], i.e. 
the dependence of subsequent nodes on seed nodes will be weak with the growth of the 
crawling chain.

5.2.2. Number of seed nodes and branches. Subsequently, we evaluate the influence of 
the number of seed nodes on the performance of SNS and RDS by fixing the number of 
branches at 3 and selecting all seed nodes uniformly. Simulation results are presented 
in figures 8(a) and (b). We can see that when the number of seeds increases from 3 to 
10, both REU  and REV  for 〈k〉 and P (A) are almost identical, indicating that the per-
formance of SNS and RDS is not aected by the number of seed nodes.
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Figure 5. Relative error REU  and REV  obtained from (a) BFS, (b) DFS, (c) FFS, 
(d) RW, (e) MHRW, (f) MDRW, (g) SNS, (h) RDS in Gpow, Gassort and Gdisassort (i.e. 
bipartite networks with dierent degree correlations).
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For the implementation of FFS, SNS and RDS, multiple branches are typically 
used, as the response rate in practice may be low. With this mind, we then explore the 
performance of FFS, SNS and RDS with dierent numbers of branches. In simulations, 
the seed nodes are selected uniformly and the number is set at 5. Results are shown in 
figures 8(c)–(e). Again, we can see that there is no visible dierence in REU  and REV  
for all these methods when the number of branches increases from 3 to 10 (SNS and 
RDS) and the burning probability increases from 0.3 from 0.9 (FFS).

The above results are similar to what has been found in analyses of one-mode net-
works [54, 67], i.e. these crawling methods are not sensitive to the number of seeds 
and branches due to the fact that the number of seeds or branches does not change 
the inclusion probability of nodes. It is worth noting that even if there is no significant 
influence from seed number and branching number, in practice the number of seeds and 
branches should be set adequately, so as to avoid sampling chains stopping growing as 
the response rate may be low.
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Figure 6. Relative error REU  and REV  obtained from (a) BFS, (b) DFS, (c) FFS, 
(d) RW, (e) MHRW, (f) MDRW, (g) SNS, (h) RDS in Gpow and Gcommu (i.e. 
bipartite networks with community structures).
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6. Synthesis comparison

After investigating the eect of dierent factors on each crawling method, in this sec-
tion, we conduct a synthesis comparison of eight crawling methods on four network 
structures. Base settings of simulations are adopted, and the sampling proportion is set 
at 10%.

In figure 9, we show the comparison of relative error obtained by these crawling 
methods on four types of networks: a network with power-law degree distributions 
(Gpow), a network with extremely unequal number of nodes in U and V  (Gdiff_size), a 
network with positive degree correlation (Gassort) and a network with strong community 
structures (Gcommu).

First of all, we discover that, due to the over-representativeness of high degree 
nodes, RW generates the large bias in these networks. The relative errors of both layers 
are about 2 for 〈k〉 and all over 0.2 for P (A) in Gpow, Gassort and Gcommu, and are larger 
than other methods in Gdiff_size.

Besides RW, crawling methods, including BFS, DFS, FFS and SNS, also show large 
bias: for 〈k〉, their relative errors in Gpow and Gcommu are all near 1. And the relative 
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Figure 7. Relative error REU  and REV  obtained from (a) BFS, (b) DFS, (c) FFS, 
(d) RW, (e) MHRW, (f) MDRW, (g) SNS, (h) RDS in Gpow when seeds are selected 
uniformly or with probability proportional to degree.
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MDRW, SNS, RDS in (a) Gpow, (b) Gdiff_size, (c) Gassort and (d) Gcommu. Sampling 
ratio for each layer is 0.1.
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errors of BFS and FFS are larger than 1.7 in Gassort. Although these methods show rela-
tively small bias in layer V  of Gdiff_size, the bias in layer U is large: the relative errors 
all exceed 1. For P (A), their relative errors in Gpow, Gdiff_size and Gcommu are all over 
0.15. And the relative errors of BFS and FFS are larger than 0.3 in Gassort.

Third, the results reveal that MDRW, MHRW and RDS have the least bias in all 
types of network structures. Specifically, MDRW shows good performance in all these 
network structures; its relative errors for 〈k〉 and P (A) are all less than 0.1 in each of 
the four types of networks. MHRW is almost unbiased in Gassort but generates large bias 
in layer U of Gdiff_size. RDS outperforms MHRW and MDRW in Gpow, Gdiff_size and 
Gcommu; its relative errors are all less than 0.05 in these networks. However, the bias of 
RDS for both 〈k〉 and P (A) is slightly larger than MDRW and MHRW in Gassort. The 
better performance of the three methods is owing to their correction mechanisms for 
the inclusion probability of nodes. And it is worth noting that eective use of MDRW 
and MHRW requires some prior information, i.e. the maximum degree of a network 
and the degree of neighbors.

Table 3. Summary of the performance of eight crawling methods.

Factors BFS DFS FFS RW MHRW MDRW SNS RDS

Degree  
distribution

× × × × ° ° × °

Unequal size × × × × × ° × °
Assortativity × ° × ° ° ° × °
Community 
structure

× × × ° ° ° ° °

Seed  
distribution

° ° ° ° ° ° ° °

Seed number — — — — — — ° °
Branching  
number

— — ° — — — ° °

  ×, aected; °, not aected; —, not applicable.

Table 4. The selection of crawling methods under dierent settings for generating a population 
mean.

BFS DFS FFS RW MHRW MDRW SNS RDS

Power-law degree 
distribution

° ° •

Unequal node size in 
layers

° •

Strong assortativity ° ° •
Strong community 
structure

° ° •

°, recommended with prior information; •, recommended without prior information.
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7. Conclusion and discussion

In this paper, we evaluate eight crawling methods on bipartite networks and compare 
their performance on the estimation of two network variables (the average degree of 
networks and the proportion of nodes with property A) with sample data under a vari-
ety of conditions.

Results reveal that network structures, including degree distribution, number of 
nodes in layers, degree correlation and communities, have varying eect on these 
crawling methods. We summarize these results in table 3. While BFS and FFS are 
significantly aected by all four network structures, DFS, RW and SNS are aected 
by degree distribution and the unequal number of nodes in layers. Community struc-
ture has a slight eect on DFS and assortativity has an eect on SNS. The methods, 
with the ability to adjust the inclusion probability of nodes, perform much better than 
the others. MHRW is only aected by the unequal number of nodes in layers, RDS is 
slightly aected by assortativity. All these variances in network structures have almost 
no eect on MDRW.

Compared to the eect of the network structures, the settings of the sampling 
design have almost no influence on the performance of crawling methods (see table 3), 
which is due to the fact that the long sampling chain of crawling methods reduces the 
influence of initial seeds and branching number. Therefore, when response rate is low, 
increasing the number of seeds and branches properly is generally the best approach to 
enhancing eciency of sample collection.

To summarize, for sampling and inferring in bipartite networks, RDS outperforms 
other methods, and its estimates of network variables for U and V  have the least bias in 
almost all scenarios, including networks with power-law degree distribution, extremely 
unequal number of nodes in layers and strong community structure. When the net-
work is assortative, RDS is still among the best three sampling methods, together with 
MHRW and MDRW.

In all cases, methods with statistical approaches to adjust the inclusion probability of 
nodes have substantially improved performance. MHRW and MDRW adjust the inclu-
sion probability of nodes during the sampling process by using some prior information, 
i.e. the degree of neighbors for MHRW and the maximum degree of the network for 
MDRW. After collecting samples, RDS adjusts the inclusion probability by means of 
the re-weighting strategy, which depends on the well-known Hanse–Hurwitz estimator. 
However, these adjustment approaches may not be eective and feasible. The adjustment 
mechanism of MHRW is invalid in the network with the unequal number of nodes in two 
layers, while the degree of neighbors and the maximum degree of networks are dicult 
to obtain in practical implementations [11, 68]. In addition, the adjustment approaches 
during the sampling process have drawbacks, like a high rejection rate for nodes [69] and 
the tendency to collect too many repeated samples [70]. By comparison, RDS has many 
advantages, e.g. the adjustment strategy after the sampling process which does not need 
prior information makes RDS more flexible in practice. In addition, as RDS does not 
reject nodes during the sampling process, its collection of samples is more ecient.

This paper provides a comprehensive investigation of implementing eight crawl-
ing methods on bipartite networks; this has not been examined in the literature. We 
endeavor to identify factors that critically aect the performance of crawling methods. 
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We concluded that particular crawling methods prove consistently more eective in 
dierent sampling scenarios. The methods for networks with dierent structures that 
we advocate, based on repeated testing, are summarized in table 4. In general, we rec-
ommend the robustness of RDS as an eective instrument in many dierent scenarios. 
If the prior information is available, MHRW and MDRW are also ecient, reliable 
methods for sampling bipartite systems.
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